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Abstract. In this study, by introducing the Ginzburg-Landau free energy, we define a
parameter corresponding to an order parameter as a factor of the phase transition in
manufacturing processes. Because thermal diffusion equations can be applied as mathe-
matical models in the manufacturing process, we consider the applicability of the “Edge
of Chaos”, which is used in complex systems, to the manufacturing industry and the
extent to which it would do so. We believe that in the manufacturing industry, the “Edge
of Chaos” is a phenomenon that is caused by the loss of synchronization between the
production and production throughput. The phase transition phenomenon is observed as
the process throughput while manufacturing certain control equipment. We also verify
the phase transition in the system through experiments on the flow production system.
To maintain synchronization between the manufacturing and process throughput, it is
necessary to know the critical point of the phase transition. From an economic perspec-
tive, it is important to focus on ways to prevent the critical point from being exceeded.
In this study, we adopt the average value of the normalized rate-of-return deviations as
the critical point. By not exceeding the average value of the rate-of-return, it is possible
to maintain uninterrupted production.
Keywords: Production density, Rate-of-return deviation, Phase transition, Potential
energy, Ginzburg-Landau free energy

1. Introduction. In recent years, much research related to phase transition theory has
been reported. In particular, there has been significant progress in studies on physical
phenomena.

In the field of statistical mechanics, the simulated annealing method is considered to be
an efficient optimization technique. In this paper, we propose an approximation equation
derived by the linearization of a fuzzy nonlinear membership function [1].

Optimization of both product manufacturing and transportation related to the manu-
facturing industry has been studied. The proposed technique is an optimized information
system for automated guided vehicles and is not a centralized method [2].

In [3, 4], free energy is considered as the initial condition when mathematically treating
a phase transition phenomenon. They noted that free energy does not increase in the case
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of a closed system. In contrast, it was reported that thermal noise must be considered
when considering causative factors of phase transition.
Unlike the study by T. Tanabe and M. lshikawa, this paper attempts to analyze the

phase transition mechanism in the manufacturing industry by treating manufacturing
processes as a closed process when seen as a single manufacturing process, that is, a
process on which external forces do not act. We instead define order parameters within a
manufacturing process and further introduce the Ginzburg-Landau free energy.
In addition, we have reported that by creating a state in which the production density

that of each process corresponds to the physical propagation, and the equation dominating
the manufacturing process is indicated by a diffusion equation [5]. In the present paper,
we analyze whether the “Edge of Chaos”, which is discussed in complex systems, also
exists in the manufacturing industry and the extent to which it does. We believe that in
the manufacturing industry, the “Edge of Chaos” is caused by a loss of synchronization
between the production and production throughput.
We indicate that the phase transition phenomenon is observed in the process throughput

of the manufacture of certain control equipment. We verify the phase transition in the
system through experiments on a flow production system.
To maintain synchronization between the production and production throughput, we

need to know the critical point of the phase transition. From a business perspective,
it is vital to focus on not exceeding the critical point. In the manufacturing industry,
the critical point indicates the rate-of-return deviation. By not exceeding the average
value of the rate-of-return, it is possible to maintain uninterrupted production. The
reason for this is that the Ginzburg-Landau free energy can be treated as free energy for
the manufacturing quantity between manufacturing processes. In other words, it can be
considered the same as the throughput between manufacturing processes [6].

2. Mathematical Model of the Manufacturing Process. We have reported that the
analysis of the rate-of-return deviation for a certain equipment manufacturer over the past
ten years has revealed “power-law distribution characteristics” [7]. Because the power-law
distribution is a distribution revealing the existence of a phase transition phenomenon,
we expect that there exists a correlation between the rate-of-return deviation and the
production system in a manner that is mediated by the power-law distribution.
C. G. Langton is known for his 1990 study of artificial beings [8]. He also conceptual-

ized the idea of the “Edge of Chaos”. In physical phenomena, the “Edge of Chaos” refers
to a phenomenon that corresponds to the transition state that exists between fluid and
solid phases. Phenomena similar to the “Edge of Chaos” occur during the period from
the entry of the manufacturing order for a product to its delivery. When an order for
manufacturing is received, there exists an outflow of cash due to the purchase of materials
for the person receiving the order, and there is a lead time until cash is injected at the
end of the manufacturing period. To increase the rate-of-return, it is important to reduce
the lead time from a financial perspective. In addition, the rate-of-return is decreased
if opportunities are lost and if there are excessive inventory stocks. From a practical
perspective, it is necessary to synchronize the speeds of individual manufacturing opera-
tions. We consider that the synchronization of manufacturing processes will lead to the
improvement of the production throughput. Here, the synchronization of manufacturing
processes is one method to enable the efficient progress of each process in order to increase
the throughput.
By synchronizing the processes, each process will become more time efficient. In the

under-production flow in Figure 1, because the production throughput is low relative to
the production output, opportunity loss occurs (for example, a state where the shipping
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Figure 1. Lost opportunity
(1: Under-production) and
Excess inventory (2: Over-
production)

Figure 2. The diffusive
propagation of products flow-
ing through manufacturing
process

quantity is small owing to endogenous and exogenous factors). In addition, in the over-
production flow in Figure 1, because the throughput is very high relative to the production
output, there will be excessive inventory. In any case, when such a probability structure
exists, it is considered that a phase transition phenomenon occurs in the production field.
Therefore, production management needs to be performed with this in mind.

From Figure 2, the present writers refer to a network capacity (static acceptable amount
of production) in an inter-process network (a field of production) as R. An inter-process
network means that, after one process is finished, a move to the next process is made,
and, in such a manner, processes advance sequentially. Here, assuming that a production
density function for the ith equipment is Si(x, t), Si(x, t) is expressed by

[J(x, t)dt− J(x+ dx, t)dt]R = [Si(x, t+ dt)− Si(x, t)]Rdx (1)

where J is a production flow [5].
At this time, we define a production flow as displacement of a production density

function in a unit production direction. In other words, a production density function
is proportional to cost necessary for production, and thus it can be thought that it is
production cost per unit production. Further, because performing production leads to
obtaining a return, a production density function can be also considered as a return
density function

∂Si(x, t)

∂t
= D

∂2Si(x, t)

∂x2
(2)

where D is a diffusion coefficient. t is a time variable, and x is a spatial variable.
This equation is an equation of a form the same as a diffusion equation derived from a

minimization condition of free energy in a production field [5]. It means that connection
between processes can be treated as diffusive propagation of products (refer to Figure 2).

3. Potential Energy and Return. Here, description that deviation of free energy pro-
duces a return will be made.

Assumption 1. Return is created by liquidity of production density function Si(x, t).
From this, there exists a potential that depends on a production density function.
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Here, the size of potential F (Si(x, t)) is attributed to inclination of a production density
function related to a production unit, that is, liquidity. Therefore, the following equation
is

Definition 3.1.
dF (Si(x, t))

dSi

= −κ× grand Si(x, t) (3)

where κ is a constant.

In a manufacturing process that is a subject, attention is focused on a state change in
x ∈ [0, L], t ∈ [0, T ]. That is, products are formed as a result of diffusive propagation for
each production unit, and, after that, production progresses by iteration of that. Here,
as a subject, it is supposed that behavior of an initial production density that is inputted
from an opened production field at t = 0, the behavior being exhibited at t ∈ [0, T ] in a
closed production field, is handled. In order to establish a model that constrains dynamic
behavior of a production density for each production lead time, it is expressed as Equation
(2) here.
Now, when variable transformation of x = θ+ρL, t = λ is made, Equation (2) becomes

∂Si(x, t)

∂t
+ ρ

∂Si(x, t)

∂x
= D

∂2Si(x, t)

∂x2
(4)

where D is a diffusion coefficient.
As above, Equation (4) indicates a diffusive field exhibiting advection (at transport

velocity ρ), and is an equation constraining production density Si(x, t) in a field where a
production unit is exhibiting advection at transport velocity ρ.
In other words, Figure 3 indicates that production elements are reduced due to change

in a gathering form of production elements.
Then, eventually, production units become xL (x = L) units, production elements

become L, and a stream of a production density is ended. Thus, in Si(x, t), x ∈ [0, L],
t ∈ [0, T ], meaning of continuity of production unit x has been described, in particular.
Therefore, it is considered that meaning of diffusive propagation such as Equation (4) has
been made clear.
Next, the structure of potential in production density function Si(x, t) will be examined.

Potential in the present research is defined as “ability to create a return”.
By such definition, meaning of Equation (3) has been made clear. In other words, it

is considered that inclination related to a production unit of potential F (x, t) of produc-
tion field {Si(x, t)} reduces in proportion to inclination related to a production unit of
production density function Si(x, t), resulting in creating a return (it is considered as a
difference between potentials).
When considering like this, we define potential energy (free energy) in a production

field as follows.

Definition 3.2. Potential energy in production field

[Potential of production field per production density]

= [Potential for production unit]

+ [Fluctuation of potential for production unit]

Such definition is almost equivalent to definition of the potential or free energy of a field
in physics. We consider that a return is generated by temporal deviation of a potential
function (free energy) attributed to a production density function. Therefore, let a cash
flow function for each tk ∈ [0, Tk], k = 0, 1, 2, · · · be Pk(tp) (hereinafter, the subscript k is
omitted).
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Figure 3. Production den-
sity decrease corresponding to
manufacturing element inte-
gration

Figure 4. State variables for
leadtime and throughput-time
in manufacturing process

4. Phase Transition in Manufacturing Industry. Here, meaning of phase transition
in the manufacturing industry will be described.

Now, as a state variable, lead time and throughput is considered. St(L) of Figure 4 is
defined as

Definition 4.1. Production quantity St(L) at time t, x = L

St(L) =

∫ L

0

S(x, t)dx. (5)

Production quantity St(L
∗) indicates a production quantity at the time when synchro-

nization has been made, and L∗ indicates lead time at the time when synchronization has
been made. In addition, A and B in Figure 4 mean the following equations, respectively.

B :
dSt(L)

dL

∣∣∣
L∈1

≡ P 1
t (L) (6)

A :
dSt(L)

dL

∣∣∣
L∈2

≡ P 2
t (L) (7)

Therefore, let process throughput P be defined by

Definition 4.2.

Pt(L) =
dSt(L)

dL
. (8)

For this reason, when P is made to be changed with L = constant, it becomes as shown
in Figure 5.

In Figure 5, P indicates process throughput, Ft(P,L) is potential energy, and P = P ∗

indicates that, at the phase transition point at the time when synchronization is made
(synchronized throughput), production ability of a system becomes identical. When P is
changed while L being fixed, F 1

t (P,L) is a process with low production ability, and, when
throughput is increased, potential is reduced rapidly. In contrast, F 2

t (P,L) is a process
with high production ability, and, even if throughput is raised, potential is not lowered
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Figure 5. Potential energy is
high or low when manufactur-
ing power makes it high in pro-
cess.

Figure 6. Two phases of
non-production and produc-
tion exist together

much. Here, the state of F 1
t (P,L) = F 2

t (P,L) indicates a state that, at a so-called phase
transition point F 1

t (P,L) = F 2
t (P,L), throughput will be synchronized throughput (the

throughput at the phase transition point) in the manufacturing industry. It means a state
where production ability is identical.
Accordingly, as can be understood from Figure 5, according to expression of the sta-

tistical mechanics, an opportunity loss is easy to be caused when P < P ∗, and excessive
inventory is easy to be caused when P > P ∗.
That is, in case of a system having multiple processes, when deviation from the syn-

chronized throughput point is caused, production retention (production idle) is easy to
occur between processes, and, as a whole system, this will create a state where excessive
inventory (or, opportunity losses) is easy to occur.
In physics, in order to quantify order of such state, order parameter is introduced, free

energy Ft(P,L) is expressed as Ft(P,L, Si), and Si is made to correspond to an order
parameter.
Therefore, we define relation between production density S(x, t) and we call Sim as a

synchronization production density. In other word, Sim indicates a critical point of phase
transition.
We define an order parameter known as a variable that causes phase transition as

follows.

Definition 4.3. Order parameter: production density function Si(x, t).

Definition 4.4. State of each phase Si(x, t) > Sim Excess inventory
Si(x, t) = Sim Syncronized throughput
Si(x, t) < Sim Lost opportunity

(9)

where Sim indicates a production density in the bottleneck, and let it be called as a syn-
chronization production density of output in a whole system. It can be expressed by

Sim =<

∫ t

0

f(Si, τ)dτ > (10)

where < ◦ > indicates a time average.

5. Ginzburg-Landau Free Energy in Manufacturing Process. Here, description
will be made about what Ginzburg-Landau free energy (hereinafter, referred to as G-L
free energy) in manufacturing industry is like.
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Definition 5.1. Free energy: F (Si) related to production quantity

F (Si) =

∫ L

0

[
f(Si) +

KS

2
(∇Si)

2

]
dx (11)

As previously explained, order parameter Si(x, t) means a variable related to phase
transition. Equation (11) is an equation indicating free energy given by space integration
of a function depending on order parameter Si(x, t), and is called Ginzburg-Landau free
energy [9]. Also, f(Si) indicates a potential function, and ∇Si represents fluctuation.

Here, a state where Equation (11) becomes minimum in a manufacturing process is
found. When Si(x, t) is changed by δSi(x, t), free energy change δF (Si) is as follows. In
this regard, however, space variable x = [0, L] is of one dimension here.

δF (Si) =

∫ L

0

[
f

′
(Si) +D(∇Si(x, t)) · (∇δSi(x, t))

]
dx (12)

When partial integration is performed on the second term of Equation (12) taking KS as
a constant, the following equation is obtained.∫ L

0

[
D(∇Si(x, t)) · (∇δSi(x, t))

]
dx

= −
∫ L

0

[
D(∇2Si(x, t)) · δSi(x, t))

]
dx (13)

Here, assuming that an order parameter is fixed from the start (x = 0) of a manufacturing
process to its end (x = L), because δSi(x, t) = 0, values in the boundary of the partial
integration will be also zero. From this, Equation (12) becomes

δF (Si) =

∫ L

0

[
f

′
(Si)−KS(∇2Si(x, t))

]
δSi(x, t)dx. (14)

The condition under which Equation (14) becomes minimum is indicated by

f
′
(Si)−KS(∇2Si(x, t)) ≡ const. (15)

Also, according to the statistical mechanics, assuming that Si = 0 indicates disorderly
conditions, it is essentially constituted of second and fourth degree terms of Si, and a
first degree term proportional to an external field. In the present paper, because it is
a production field without relation with an external field, a first degree term does not
exist. Therefore, let f(Si) be a function like Equation (16). Figure 6 indicates a case in
which two phases (production and non-production) coexist, and, now, it is assumed that
G-L free energy has two minimum values S1

im and S2
im and they are of an identical energy

value. When Equation (16) is viewed as movement of potential, there exists a solution by
which Sim(−∞) = S1

im at x = −∞, and Sim(+∞) = S2
im at x = ∞. From Equation (15),

we obtain

f(Si) = ξ
{
−1

2
KCS

2
i +

KS

12
S4
i

}
, (16)

where ξ, KC and KS are constants.
Now, the relationship between a return and a rate-of-return deviation and profitability

production density function,

f(Si(x, t)) = ηPh (17)

df(Si(x, t))

dSi

= ∆D (18)

where h is a return, and ∆ is a rate-of-return deviation.
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In addition, according to the statistical mechanics, assuming that we call r as a phase
transition factor, we obtain

ηP r =
[
f

′′
(Si)/KS

]1/2
, (19)

where ηP means a normalization constant of a potential function. As we have been
described before, it can be thought that the number of production densities is proportional
to a return. The reason why a return is considered is to consider a boundary width in
phase transition in a manner making it correspond to a rate-of-return deviation.
From Equation (19), we obtain

r =
1

ηP

√
f ′′(Si)

KS

. (20)

From Equation (16) and Equation (20), we obtain

r =
1

ηP

√
ξ(−1 +KS · S2

i )

KS

, (21)

where, 1/r indicates a boundary region where two phases of an excessive inventory and
an opportunity loss change.
Now, from Equation (18), we obtain

∆D =
df(Si(x, t))

dSi

=

√
ξ

(
−KCSi +KS · 1

3
S3
i

)
. (22)

Potential energy of production density function H(Si) becomes

H(Si) =
1

ηP

∫
Ω

ξ

(
−KCSi +

KS

3
S3
i

)
dSi

=
1

ηP
ξ

(
−1

2
KCS

2
i +

KS

12
S4
i

)
. (23)

At this time, it can be expressed by the following equation according to the degree of
order parameter.

−Sim < Si(x, t) < +Sim (24)

6. Phase Transition in the Flow Production System. Figure 7 represents a man-
ufacturing process called a flow production system, which is a manufacturing method
employed in the production of control equipment. The flow production system, which in
this case has six stages, is commercialized by the production of material in steps S1-S6 of
the manufacturing process.
The direction of the arrow represents the direction of the production flow. In this

system, production materials are supplied from the inlet and the end product will be
shipped from the outlet. We make the following two assumptions in this flow production
system.

Assumption 2. The production structure is nonlinear.

Assumption 3. The production structure is a closed structure; that is, the production is
driven by a cyclic system (flow production system).
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Figure 7. Manufacturing
flow process

Figure 8. Previous process
in manufacturing equipment

Assumption 2 indicates that the determination of the production structure is consid-
ered a major factor, which includes the generation value of production or the throughput
generation structure in a stochastic manufacturing process (hereafter called the manu-
facturing field). Because such a structure is at least dependent on the demand, it is
considered to have a nonlinear structure.

Because the value of such a product depends on the throughput, its production structure
is nonlinear. Therefore, Assumption 2 reflects the realistic production structure and is
somewhat valid. Assumption 3 is completed in each step and flows from the next step
until stage S6 is completed. Assumption 3 is reasonable because new production starts
from S1.

Based on the control equipment, the product can be manufactured in one cycle. The
production throughput required to maintain 6 pieces of equipment/day is as follows:

(60× 8− 28)

3
× 1

6
' 25 (min) (25)

where the throughput of the previous process is set as 20 (min). In Equation (25), “28”
represents the throughput of the previous process plus the idle time for synchronization.
“8” is the number of processes and the total number of all processes is “8” plus the
previous process. “60” is given by 20 (min) × 3 (cycles).

Here, the previous process represents the working until the process itself is entered.
To eliminate the idle time after classification of the processes in advance, this previous
process was introduced. In Figure 8, for example, it represents the termination of the
operation of step K5 during the previous process. By making the corresponding step K5
to be the previous process, there are eight remaining processes. When performing the 3
cycles in Figure 8, the first cycle is {K1,K2,K3}, the second cycle is {K4,K6,K7}, and
the third cycle is {K8,K9}.

After completion of the third cycle, the workers start manufacturing the next product.
That is, the first manufacturing process starts the first cycle. By adopting the previous
process cycle, the third cycle is adopted in a parallel process.

At this time, the theoretical throughput (T
′
s) is as follows.
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Here, the previous process is adopted in test-run 5 only.

T
′

s =20× 6(First cycle) + 17× 6(Second cycle)

+ 20× 6(Third cycle) + 20(Previous process) + 8(Idol-time)

= 364 (min) ∼ 370 (min) (26)

One process throughput (20min) in full synchronization is

Ts = 3× 120 + 40 = 400 (min) (27)

Therefore, a throughput reduction of about 10% can be achieved. However, the time
between processes involves some asynchronous idle time.
As a result, the above test-run is as follows.

• (test-run1): Each throughput in every process (S1-S6) is asynchronous, and its pro-
cess throughput is asynchronous. Table 1 represents the manufacturing time (min)
in each process. Table 2 represents the variance in each process performed by work-
ers. Table 1 represents the target time, and the theoretical throughput is given by
3× 199 + 2× 15 = 627 (min).

In addition, the total working time in stage S3 is 199 (min), which causes a
bottleneck. Figure 9 is a graph illustrating the measurement data in Table 1, and it

Table 1. Total manufacturing time at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 15 20 20 25 20 20 20
K2 20 22 21 22 21 19 20
K3 10 20 26 25 22 22 26
K4 20 17 15 19 18 16 18
K5 15 15 20 18 16 15 15
K6 15 15 15 15 15 15 15
K7 15 20 20 30 20 21 20
K8 20 29 33 30 29 32 33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Figure 9. Total manufactur-
ing time at each stages for each
worker

Figure 10. Variance data for
each worker at each stages
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Table 2. Variance of Table 1

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Table 3. Total manufacturing time at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 4. Variance of Table 3

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0

represents the total working time for each worker (K1-K9). The graph in Figure 10
represents the variance data for each working time in Table 1.

• (test-run2): Set to synchronously process the throughput.
The target time in Table 3 is 500 (min), and the theoretical throughput (not

including the synchronized idle time) is 400 (min). Table 4 represents the variance
data of each working process (S1-S6) for each worker (K1-K9).

• (test-run3): The process throughput is performed synchronously with the reclassi-
fication of the process. The theoretical throughput (not including the synchronized
idle time) is 400 (min) in Table 5.

From this result, the idle time must be set at 100 (min). Based on the above
results, the target theoretical throughput (T

′
s) is obtained using the shift throughput
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Table 5. Total manufacturing time at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20
K3 20 21 21 21 20 20 20
K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20
K8 20 22 22 20 20 20 20
K9 20 25 25 25 20 20 20

Total 180 165 164 161 180 180 180

Table 6. Variance of Table 5

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.33 3 3 0 0 0
K5 1.33 1.33 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.33 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0

Table 7. Total manufacturing time at each stages for each worker, *:
Lower than set value

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 18 18 18
K2 20 18 18 18 18 18 18
K3 20 21 21 21 21 21 21
K4 *16 13 11 11 13 13 13
K5 16 16 16 17 17 16 16
K6 16 18 18 18 18 18 18
K7 20 14 14 13 14 14 13
K8 20 22 22 22 22 22 22
K9 20 20 20 20 20 20 20

Total 168 165 164 163 166 165 164

method. This goal is

T
′

s = 120× 2 + 96 + 24 = 360 (min) (28)

After T
′
s plus the idle time, the throughput (Ts) is

Ts = 360 + 100 = 460 (min) (29)

Table 6 represents the variance data of Table 5.
• (test-run4): Set the shift throughput in some of the processes.
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Table 8. Variance of Table 7

K1 0.67 0.33 0.67 0.67 0.67 0.67
K2 0.67 0.67 0.67 0.67 0.67 0.67
K3 0.33 0.33 0.33 0.33 0.33 0.33
K4 1 1.67 1.67 1 1 1
K5 0 0 0.33 0.33 0 0
K6 0.67 0.67 0.67 0.67 0.67 0.67
K7 2 2 2.33 2 2 2.33
K8 0.67 0.67 0.67 0.67 0.67 0.67
K9 1.67 1.67 1.67 1.67 1.67 1.67

Table 9. Total manufacturing time at each stages for each worker, K5:
Previous process, *: Lower than set value, (K4, K6, K7): Second cycle

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 18 18 18
K2 20 18 18 18 18 18 18
K3 20 21 21 21 21 21 21
K4 *16 13 11 11 13 13 13
K5 16 * * * * * *
K6 16 18 18 18 18 18 18
K7 16 14 14 13 14 14 13
K8 20 22 22 22 22 22 22
K9 20 20 20 20 20 20 20

Total 148 144 143 141 144 144 143

Table 10. Variance of Table 9, K5: Previous process

K1 0.67 0.33 0.67 0.67 0.67 0.67
K2 0.67 0.67 0.67 0.67 0.67 0.67
K3 0.33 0.33 0.33 0.33 0.33 0.33
K4 1 1.67 1.67 1 1 1
K5 * * * * * *
K6 0.67 0.67 0.67 0.67 0.67 0.67
K7 0.67 0.67 1 0.67 0.67 1
K8 0.67 0.67 0.67 0.67 0.67 0.67
K9 0 0 0 0 0 0

The target time is 500 (min) in Table 7, and the theoretical throughput (not
including the synchronized idle time) is 400 (min).

From this result, set the idle time at 80 (min). Based on the above result, the
theoretical throughput (T

′
s) obtained using the shift throughput method is

T
′

s = 400 + 80 = 480 (min) (30)

Table 8 represents the variance data for Table 7.
• (test-run5): Set the shift throughput in some of the processes.

Table 9 represents the same result of test-run4, and the theoretical throughput
(not including the synchronized idle time) is 400 (min). From this result, the idle
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time must be set at 80 (min). Based on this result, the theoretical throughput (T
′
s)

obtained using the shift throughput method is as follows.
“WS” in the measurement tables represents the standard working time. This is

an empirical value obtained from long-term experiments.

T
′

s = 400 + 80 = 480 (min) (31)

Table 10 represents the variance data of Table 9.

The results are as follows.
Here, the trend coefficient, which is the actual number of pieces of equipment/the target

number of equipment, represents a factor that indicates the degree of the number of pieces
of manufacturing equipment.
Test-run1: 4.4 (pieces of equipments)/6 (pieces of equipments) = 0.73, Test2-3 = 5.5

(pieces of equipments)/6 (pieces of equipments) = 0.92, Test4-5 = 5.7 (pieces of equip-
ments)/6 (pieces of equipments) = 0.95.
Variance data represent the average value of each test-run.
The read-time with test-run1 in Table 11 decreases from 627 (min) to 500 (min), and

the data shows that the phase transition occurs accurately.

7. Numerical Example of a Phase Transition Coefficient. As explained above,
we found that the trend coefficient in Table 11 varies greatly between test-run1 and test-
run2. In other words, it is understood that the average number of pieces of manufacturing
equipment increases from 4.4 (pieces of equipment) to 5.5 (pieces of equipment). This
trend coefficient represents a factor corresponding to ηP in Table 12.
KS in Table 12 represents a phase transition coefficient (r), and both ηP and ηS repre-

sent a normalized constant.
Figure 11 illustrates the change in the phase transition factor when ∆Dn varies from

−0.3 to +0.3, and 1/r indicates a boundary area in which phases are changed. In the
horizontal axes of Figures 11-13, the area indicating 1/r is an area near −0.133 < 1/r <
+0.1. Figure 12 indicates a change in the potential value, and Figure 13 indicates a
change in the rate-of-return deviation. In Figures 12 and 13, as ∆Dn becomes larger, 1/r
also becomes larger, and as a result, the boundary region becomes wider. That is, a lower
percentage is required to cause the phase transition.

Table 11. Test-running results

Trend coefficient Variance Read-Time

Test1 0.73 0.29
�� ��627

Test2 0.92 0.06
�� ��500

Test3 0.92 0.03 500
Test4 0.95 0.03 480
Test5 0.95 0.03 480

Table 12. Set parameter values

Type-1 Type-2 Type-3 Type-4 Type-5 Type-6 Type-7 Type-8 Type-9 Type-10
\ KS 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5
ηP 100 100 100 100 100 100 200 500 600 1000
ηS 10 10 10 10 10 100 100 250 300 500

ηS/ηP 0.1 0.1 0.1 0.1 0.1 1.0 0.5 0.5 0.5 0.5
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Figure 11. The phase tran-
sition factor values r corre-
sponding to the normalization
value of rate-of-return devia-
tion ∆Dn

Figure 12. The potential
values F (Si) corresponding to
the normalization value of
rate-of-return deviation ∆Dn

Figure 13. The rate-of-return deviation values ∆D corresponding to the
normalization value of rate-of-return deviation ∆Dn

The normalization constant was changed such that the normalization value of the rate-
of-return deviation ∆Dn lies within the range −0.3 to +0.3. This is because by doing so,
the relationship between the phase transition and potential becomes clear.

Accordingly, we think that it is important to know |∆Dn|, which is a critical point of
the phase transition, and invest heavily into manufacturing operations in order to ensure
the continued viability of the business.
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8. Conclusion. In this study, we performed a statistical mechanical analysis of man-
ufacturing processes in the manufacturing industry and analyzed a mechanism for the
phase transition on the premise that there exists a phase transition phenomenon in man-
ufacturing processes. We simulated several manufacturing processes so that when actual
manufacturing processes are seen from the perspective of the rate-of-return deviation,
there remains a range of values that represent critical points in the phase transition,
which in this case, falls within −0.3 < ∆Dn < 0.3. In this numerical value calculation
example, we found that the boundary width of the phase transition is approximately the
width of the region −0.13 < 1/r < 0.1. Although the rate-of-return differs based on the
system, the rate-of-return is improved by setting the “Edge of Chaos”, that is, the width
of the rate-of-return deviation, and maintaining that value. This is particularly important
to ensure continuity of business operations.
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