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A formal theory of the caleulus of indication
Tadao Ishii*

Abstract

This paper deals with a term reduction representation of the calculus of indication proposed by G. Spencer-
Brown’s Laws of Form, which has a formalism of great simplicity for the act of distinguishing and its basic
laws. I will give an equational theory based on the term reduction of indication in order to make an interpretation

of this calculus more explicit way.

1 Introduction

In [8], G.Spencer-Brown proposed the calculus of indication which was firstly intended to give mathematical
basics for Boolean algebrar of logic. In fact, since Frege and Russell's Principia Mathematica, it has been taken
by right that one could not find more simple basics for logic than the notion of true and false as valued of simple
statements. On the ground that Boolean algebra designed to fit logic with the above basics has not any
mathematical interest about their arithemetics, alternatively G.Spencer-Brown employed a geometrical formal
system based on a primitive act (rather than a logical value) of distinguishing a space to duality (cutside and
inside) like the skin of a living organism cuts off in the same way. What is the difference of two basics, is that
for example give a statement to be analyzed, the analysis need not stop at the point where its truth value is
assigned, but the statement has more deeper content on the act of distinction and its indication. Namely, every
logically equivalent statements are not necessarily identical in the situations arised by the act of distinction. Here
is a brief description of his calculus (see [9] and [12] for details).

G. Spencer-Brown explored the indications arising from the act of distinguishing, that is simply identified with
the name of the content of the distinction. In his representation of indication, it assumed that all distictions and
all its domains, i.e., all spaces are alike, respectively. So by erasing every qualitative difference of the
distinctions, we can reduce them to their basic quality of generating a boundary in whatever domain. This gives
rise to the notion of primary distinction and indicational space, and to consider calculations among them. The

exploration was inspired by establishing the following:

Definition 1.1 Distinction is perfect continence.
Axiom 1.2
(A1) The law of calling
The value of a call made again is the value of the call.
{A2) The law of crossing '

The value of a crossing made again is not the value of the crossing.

The above definition means that the act of distinction can be done by arranging a boundary with separate sides.
For example, drawing a circle in a plane is a distinction. The first axiom says that to refer (or call) a situation of
distinction repeatedly is the same virtue as a single reference (or calling). Also, the second axiom says that the
act of distinction in twice is a void. So there are two kind of operations in the reference of situations of

distinction, that is, juxtaposition and a king of exponentiation. Now we employ ¢ and D() as the sign of a void

*ISHII, Tadao [[E# X7 H5HH]

—103—



space and an act of distinction (or its indication), respectively. Then the sign D() has the operator-operand
polarity, that is, the distinction DX() represents not only an act of distinction (as an operator) but also a situation
of distinction (as an 0pérand). In order to account for the implicit operations of distinction and the polarity we
clarify the reduction process for the calculus of indication by introducing a formal theory of indicational
equality.

In section 2, we recall the primary arithmetic in G. Spencer-Brown’s book [9]. Then we define CI-terms on the
indicational language Lo consisting of a set of variables, a constant @ and unary function D, and also a formal
theory CI of I-equality that is corresponding to the primary arithmetic. Futhermore, each theorem involved with

"the primary arithmetic is revised on CI. In section 3, we introduce an algebraic theory PA of I-equality
corresponding to the pﬁmary algebra, and revise their results. In section 4, we demonstrate an interpretation of )
PA within the classtcal propositional logic by guiding principle of appendix 2 in [9]. It is important to note that
the calculus of indication has many possible interpretations beyond the classical propositional logic. In final
section, we summarize several isomorphisms between PA and Boolean algebra with some distinct primitives

based on results proposed before now, and discuss also some remaining problems and further subjects.

2 The primary arithmetic
2.1 Recalling the primary arithmetic _
The following definitions are the short summary of G. Spencer-Brown's, Laws of Form (see [9]).

Definition 2.1 The form is generated by drawing a distinction. Call it the first distinction. Call the space in
which it is drawn the space severed by the distinction. Call the parts of the space shaped by the severance or,
alternatively, the spaces, states, or contents distinguished by the distinction.

Definition 2.2 Let any mark, token, or sign be taken with regard to the distinction as a signal. Call the use of
any signal its intent, Let a state distinguished by the distinction be marked with a mark D() of distinction (we
employ Df) instead of the original cross). Call the siate the marked state. Call the state not marked with the
mark the unmarked state (we specify this by @).

Definition 2.3 Call the space severed by any distinction, together with the entire content of the space, the form
of the distinction. Call the form of the first distinction the form.

Definition 2.4 Call any copy of the mark a token of the mark. Let any token of the mark be called as a name of

the marked state. Let the name indicate the state.

Definition 2.5 Call the form of a number of tokens considered with regard to one another an arrangement. Call
any arrangement intended as an indicator an expression. Call a state indicated by an expression the value of the
expiession. Call expression of the same value equivalent. (Let a sign = of equivalence be written between

equivalent expressions. )

Definition 2.6 Let any token be taken for intention. Let any token be given a name cross fo indicate what the
Intention is. Let each token of the mark be seen to cleave the space into which it is copied. That is to say, let
_each token be a distinction in its own form. Call the concave side of a token its inside. Let any foker be intended
as an instruction to cross the boundary of the first distinction. Let the crossing be from the state indicated on the

inside of the token to the state indicated by the token. Let a space with no token indicate the unmarked state.
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Definition 2.7 The form of every token called cross is to be perfectly continent. We have allowed only one kind
of relation between crosses. Let the intent of this relation be restricted so that a cross is said fo contain what is

on its inside and not to contain what is not on its inside.

Definition 2.8 Call an indication of equivalence expressions an equation. Call the following two equations

primitive.
(P1) D(B)D(B) = D(D) _ (by Al)
(P2) DID(D)) =0 ' ‘ {by A2)

Definition 2.9 Call any expression consisting of an empty token simple (i.e, D(@)). Call any expression
consisting of an empty space simple (i.e, @). Let there be no other simple expression.

2.2 Cl-term and its substitution

I will introduce a term reduction representation of the calculus of indication in the same manner of A-calculus
(121,041). Let Ly =<{L¢y, P, @ be the indicational language consisting of infinite denumerable set of variables
€1, €2, €3,..., a constant ¥ (unmarked state), unary function D {indicator or marked state). Then we have the

following.

Definition 2.10 (i) The set of CI-terms I is defined inductively as follows:
" (1) All variables and constant {3 are CI-terms (called atoms).
(2) If M and N are any CI-terms, then (MN) is a-CI-term (called a calling).
(3) If M is any CI-term, then D(M) is a CI-term (called a distinction).
(4) Nothing is a CI-term except as required by (1),(2) and (3).
(i) Call any CI-terms with no variables the closed CI-terms.

Let M, N, L,... denote arbitary CI-terms. M1MaM3+ - M, is an abbreviation of ((* - - (M M2)Ms)- - *)M,), where
it assumes that associative and commutative laws for parentheses hold. Also D(M)N is an abbreviation of
(D(M))N. We employ the symbol = to denote syntactic equality. For example, @, D(@) and
MND(D(LD(D(B)YPIR) are-all CI-terms.

Definition 2.11 Let M be any CI-term. Then the depth of a term M (notation dph(M)) is the total number of
nesting occurrences of D in M. More precisely, can be defined inductively as follows:

(1) dph{a)=0 for any atomic term a.

(2) dph(MN)=max{dph(M),dph(N}}

() dph(D(M))=1+dph(M)
" For example, we have dph(&)=0, dph(D(2)b)=1 and dph(D(D(IXa)b)))=3.

Definition 2.12 M is a subterm of N(notation M C Ny if M € Sub(N), where Sub(N), the collection of subterm
_ of N, is defined inductively as follows: ' :
() Sub(a)={a} for any atomic term a.
(i) Sub(MN)=Sub(M)\J Sub(N)U {MN}
(i) Sub(DM))=Sub(M)U {D(M)}
A subterm may occur several times; M = D(D(N))D(N) has two occurrences of the subterm D(N). Let Ny, N2
be subterm occurrences of M. Then Ny, Ny are disjoinit if N1 and N; have no common symbol occurrences.
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Definition 2.13 Ler M-be any CI-term. Then the iteration of distinction is defined inductively as follows:
(1) D) = M
(2) D™(M) = DD"(3M))

Definition 2.14 Let M be any CI-term. Then the iteration of calling is defined inductively as follows:
1) M=g |
2) (n+1)M = nMM ,
For example, we have the abbreviatibns: DID(D@Y)) = DD, aaabb = 3a2b or a2(ab) for any atoms a, b
and aD(pg)D(pq) = a2D(pg).

Definition 2.15 Let any CI-term M has the space pervading it. Let the space of a term N is one more deeper
than the space of a term M if M = D(N). Let M be any CI-ferm. Then call the space of term M the shallowest
space with regard to term M. Let M be any CI-term. Then call the space of depth dph(M) the deepest space with
regard to term M. Let any indicator D, standing in any space in a indicator Dy, (n < m) be said to be contained
in D, Let any indicator Dy, standing in any space in ¢ indicator D, be said to stand under the indicator D, Let

M be any Cl-term. Then each subterm of M is pervaded by any space under the depth dph(M).

Definition 2.16 For any CI-term M,N, define [N/XIM to be the result of substituting N for any subterm X in M

inductively as follows:

(1) [NX]X=N
(2) INXIP =P : fXEP
(3) [NIXI(PQ) = (INIX]PINIX]Q)

(4) [INXID(P) = D(INIX]F) ifX £D(P)

2.3 |-reduction
Definition 2.17 For the sei of CI-terms I, let I” be a notion of simplification on I.
(i) The simplification I has the following three binary relations.
(1) = (or —>p-) : one step I~-reduction .
(2) = (or &) : I -reduction
(3) = : I~ -equality
(i} One step I"-reduction is defined inductively as follows:

(1) DEHD(DB) — D(D) : {Condensation}
(2 DDEH— @ . {Cancellation)
(3) MO~ M

(4y MN >~ NM

(5) M(NLy = (MN)L
6y LM—~IN=M—N
7y DMy =~ D@N)=M—~N
(fi) — is the reflexive, transitive closure of — :
(iv) = - is the equivalence relation generated by — :
Definition 2.18 For the set of CI-terms I, let I be a notion of complication on 1.
(i) The complication I* has the following three binary relations.
(1) — (or =+ ) : one step IT-reduction
(2) = (or <p ) : IF-reduction
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(3) =p+ : IT-equality
(ii) One step I'-reduction is defined inductively as follows:
(1) D(@) — DBD(D) (Confirmation)
(2) @ — DG (Compensation)
GYM — MO
4y MN -~ NM
(5) M(NLY — (MN)L
OM-—-N=ILM—IN
(7)M—)N=>D(M) - D(N)
(iii) — is the reflexive, transitive closure of —

(iv) =p is the equivalence relation generated by —

Definition 2.19 For the set of Cl-terms I, let I* be a notion of calculation on L.
(1) The calculation I* has the following three binary relations.

(1) = (or —> 1) : one step -reduction

(2) - (or 2 p) : *-reduction

(3) =p=: Fr-equality (or we also simply employ = : equality)
(ii) One step I*-reduction is defined as follows:

‘ M>N&E M>Nor M~ N

(iii) -» is the reflexive, transitive closure of —>

(iv) =p+ is the equivalence relation generated by

Definition 2.20 (i) D(B)YD(D) and D(D(D)) are c:alled a Cl-redex, and the corresponding terms D(D) , O are

called its CI-contractum.

(i) A term M which contains no CI-redex is called a CI-normal form (or simple term).

(iif) The class of all CI-normal form is called CI-nf. If a term M I*-reduces to a N in CI-nf, then N is called a
Cl-normal form of M. :

(iv) If there is a Prreduction from a term M to its CI-nf N, then call this I *_reduction the calculation of M.

Definition 2.21 (CI, the formal theory of 1*-equality)
(i) The formulas of CI are just M = N, for all Cl-terms M, N. This theory is axiomatized by the following
axioms and rules: '

(A1) 2IH@) = D(B) ' (Number)
(A2) DXD) = ' ' _ (Order)
(A3) M =M ()t
(Ad) MN =NM '
(A5) M(NL)=(MN)L
{AGY M = MO

RD 571 =hT

(R2) D_(m' yi e
®3) M=N (*)

1 In precisely speaking, these axiom and rules are not necessary because they are provable in C7, see theorem 2.29-31.
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(12} Provability in CI of an equation is denoted by CI - M =N or often just by M = N. FCIFM=N then M
and N are called T*-convertible.

@iy Call also this theory the primary arithmetic.

2.4 Primary arithmetic
Theorem 2.22 A CI-term consisting of a finite number of indicators can be simplified to a simple term.

Proof We show this by induction for the number of nesting indicators of a term. Consider any CI-term M with a
finite number of D() in space s. Then there exits a natural number n such that 1 = dph(M). By the definition, the
shallowest space of M is s = s and the deepest space of M is s,

1) n=90
By s, =59 =5, we get a simple term M = ().
2y n=1
() M = D)

This case is already a simple term.
(i) M = DIGD{D)- - -D(B) = mDB) (mEN)
mD(@) — (m-1)D(D)
= (m-)D(D)
. = D(@) | (A1)
Hence, this case is also a simple term.

(3) For n <k, assume that the CI-term M can be simplified to a simple term. Then consider a CI-term M with

depth n = k+1.
() M = PDy{Dy, (D)) (where dph(P) < k)
o PD{Dye(@)) — PO : (A2)
. p (A46)
=~ D(@yor @ (LH.)

(it) M = PDy(mDy () (wherem € N, dph(P) <k}
PDy(mDy,1(8Y) = PDy((m-1)Dye1(B))

= PDi{((m-2)D 141 ()

= PDy(Dy. (DY) (A1)
PG (A2)
- D{@) or @ : (LH.)

(iif) M = PDyy(nDy(mDy.1(@))) (where m, n € N, dph(P) < k)
PDy ((nDi(mDy. (1)) — PDy ((Di((m-1)Dy,1(8)))

= PD ((nD{Dy1 (D)) (A1)
- PDk.l(h!ﬁ) o (AZ)
= PDy (((n-1) @) ' (AG)
- PDy (@) ) (A6)
- (@) or @ (L.H.)
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Thereby, every CI-term M with a finite number of indicators can be simplified to a simple term.
[l
Theorem 2.23 If any space contains an empty indicator, the value indicated in the space is the marked state.
That is for any Cl-term P, PD() = D({).

Proof Let M be any CI-term containing an empty indicator. Then M is of the form M = PD(@). By Theorem
2.22, a subterm P of M can be reduced to either of the following simple terms.
(1) P~D(D)
M = PD() = D(GD(D)
-~ D(@)
D P-0
M = PD(®) ~ BD(D)
~ D(D)D
—~ D(@)
Thereby, in each case the simplification of M can be reduced to a simple term D{(@).
Hence, M = PD{@) = (). Therefore, M indicates the marked state.
. ]
Definition 2.24 (i) Let M’ stand for any number, greater than zero, of Cl-terms indicating the marked stale.
Call the value af M' a dominant value. _
(ii) Ler U’ stand for any number of Cl-terms indicating the unmarked state. Call the value of /' a recessive
value,
Giiy If any Cl-term M in a space s shows a dominant value in s, then the value of M is the marked state.
Otherwise, the value of M is the unmarked state. (called Rule of dominance}
By the above definition, we get the following equations:
(i) M' = D)
u=0

Proposition 2.25 For M', U, the following equations hold.
(1) MM =M

@ UU=U

3 MU=M

4y DM) =U"

5y DUY=M

Proof By the definition, Let M', U" be the followings:
M= mD(D) (m €N,
U = nd nEN
We only show the case of (1), (3) and (4).
(1) MM = mD({B)mD(F) = 2mD(D)
- (2m-1)D(D)

~mD(@) =M

(3) MU' = mD(B)nD
— mD(@)(rn-1)
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=~ w3 =M
4 Dy —~ DID(D))
g
—~ N
O
Theorem 2.26 The simpiification of any Cl-term is unique. That is to say, if any Cl-term M simplifies to a
simple term My, then M cannot simplify to a simple term other than Ms.

Progf Let M be any CI-term in space sg. Then there exists a natural number n such that n = dph(M). By the
definition, the space s, is the decpest space of M. Moreover, the indicators covering s, are empty, and they are
the only contents of s,.;. Being empty, each indicator in s,.; can be seen to indicate only the marked state.
Now make a mark M’, IJ' on the outside of each indicator in M as the following procedure:
(1) Make a mark M’ on the outside of each indicator in s,4. Then no value in s, is changed, since
D(BIM' =~ DD '
— D(D)
Therefore, the value of M is unéhanged.
(2) Any indicator in s, either is the followings:
@ D@ (EN,I=0
Mark it with A" so that the same considerations in (1) apply.
(i) rD(mD@BIMY) (mn € N,mn>1)
Mark it with I, Then no value in s, is changed, since
D(mD@M WU = D(m(D@WM D
= D(m(D(D)M))
Therefore, the value of M is unchanged,
(3) Any indicator in .3 either is the followings:
(D (D) ( EN,120)
Mark it with M so that the same considerations in (1) apply.
() KD(nDPYT (DM (ke E Ny k>, mzlornz=1)
If s > 1, mark it with I so that the same censideration in (2)’s (iD) apply.
Also if m =0, do the same as (). Therefore, the value of M is unchanged.

The procedure is subsequent spaces to sg requires no additional consideration. Thus, by the procedure, each
indicator in M is uniquely marked with M" or /". Therefore, by the rule of dominance, a unique value of M in sq
is determined. But the procedure leaves the value of M unchanged. Therefore, the simplification of any CI-term
is uniqﬁe. ‘

[]
Corollary 2.27 The complication of any simple term is unique. That is to say, the value of any Cl-term
constructed by taking steps from a given simple term is distinct from the value of any CI-term constructed from

a different simple term.

Definition 2.28 A calculus that does not confise a distinction it intends will be said to be consistent, where
confuse a distinction is an equation of the from M = D(M).
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Theorem 2.29 Identical CI-terms express the same value. That is to say, in any CI-term M, M = M.
Theorem 2.30 CI-terms of the same value can be identified.

Theorem 2.31 CI-terms equivalent to an idential term are equivalent to one another. That is to say, in any CI-
terms M\ N, V,ifM=Vand N=V, then M = N.

Theorem 2.32 For any CI-terms M, D(D(M)M) = @.
Proof By theorem 2,22, M can be reduced to either of the following simple terms:

(1) M=D(@)

DDAHM) = DIDIDDHDD)) : (RL, R2)
= D(@D(D)) (A2)
= D{D(F) D) (A4)
=D(D(D)) (AG)
= (A2)

) M=0 _

DIDGMM) = DID(D) B) (R1, R2)
= D(D(Dy) (A6)
=0 (AZ)

There is no other case of M, and there is no other way of substituting any case of M.
[
Theorem 2.33 For any Cl-terms M, N, L, DID(MLYD(NL))y = D(D(M)D(N))L.
Proof By theorem 2.22, L can be reduced to either of the following simple term:
(1} L=D(®)

D(D(ML)D(NL)) = DID(MD{(@)D(NIXD)}) (RD)
= DIDD(DB)DID))) (Th.1.30)
= D(DF) (A2)
=D(@) (46)

And .
DDGODN)L = DIDMDIN)IND) : (R1)
= D) : (Th.1.30)
) L=90 '
D(D(ML)D(NL)} = DID{(M@)D(NBY) (R1)
' = D{DADOD(NY) (A6)
And
DOMDN)L = DDAODN)YD : (R1)
= DIDAODN)) ' (46)
There is no other case of L, and there is no other way of substituting any case of L.
]

3 The primary algebra
3.1 The algebraic theory of I*-equality
Definition 3.1 (PA, the algebaric theory of [*-equality)
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(i) PA-terms are the same as Cl-terms,
(i) The equations of PA are just M = N, for all PA-terms M, N. This algebaric theory is axiomatized by the

Jollowing axioms and rules:

(Al) DADIMMY =@ (Position)
(A2) D(DML)YD{NL)) = D(D(M)D{N))L (Transposition)
(A3) M=M0O

(A4) MN=NM

{AS) M(NL)={(MN)L
(R1) Substitution:
IfE=Fand E C G, then infer G = [FIE]G.
(R2) Replacement:
IfE = F and any PA-term G, then infer [GlelE =.[G/e]F where e is any variable occurred in E or F.
(iff) Derivability in 'PA.of an equation is denoted by PA | M = N or often just by M = N.
(iv) Call also this theory the primary algebra.

Definition 3.2 (i) Every PA-term has as values the letters m and u - standing for “marked” and “unmarked’
states - and has as valuations mappings v : I = {mu} such that
(1) We) € {mu},  (ori=12..)
(2) v =u
m ifv(M) =u
(3) viD(M)) = .
v fviM)=m
m  ifeither viM) =morv(N)=m
(4) u(MN) ={ .
1 otherwise

(it) An equation M =N is valid in PA (i.e. PA | M = N) if v(M) = w(N) for all such valuations v.

Proposition 3.3 Let MN, LR X,Y be any PA-term. Then in any case, we have the following equations:
(1) DDMDY=M
(C2) D(MN)N = D(M)N
(C3) DM = D(D)
(C4) DIDIMNM =M
(C5) MM =M _
(C8) DIDUMDN)NDDAN) = M
(CT) DIDIDM)N)L) = D(MLYD(D(N)L)
(C8) DIDMDINRD(LRY) = DIDAMDNDLNDDMD(R))
(C9) DIDDMDENDDNDRNDIDE)RDID(Y)R))
= D(D(RMN)D(RXY)

Proof Here we show three cases C1, C7 and C8 below. Others can also show in the same way.
Cl : DiD(M))

= BDD)) (A3}
= D(D(PYPYD(D(M)) (Al,R2)
- = DDDMNDMNDDO)) (P =D(M), R1}
= DD ANDM)DD(DM)M)) (A2)
= D@DDDON)M)) _ (A1)
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= D{ID(DM))M))
=DIDIDDM)M) B)
= DIDDHDAM)MD(DAM)M)
= DDDDIDNDDMHNM
=M
=M

CT:DIDDMNL)
=DIDDDDM)))N)L)

= DOOMLDDNLY)

= D{(MLYD(D(N)L)

C8: D(D(M)D(NR)D(LR)) '
= DDADDDDNRDELRY)
= DIDAMDIDDNINL)R))
= DDAINDNDLNDDMD(R))

BB I R

(A3, RI)
(A3)

(A1, R1})

(A2, R2)
(A1)
(43)

(C1)
(A2)
(C1)

(€1
(42)
(o0

(|

Theorem 3.4 The scope of A2 can be extended to any number of divisions of the space s,.o. That is in any case,

T1 DXD(M)D(N)- - )R = D(D(MR)D(NR) - - *).

Proof We consider the cases in which s,,5 is divided into 0,1,2, and more than 2 divisions as the followings:

(1) case 0:D(EHR = D(1H)
(2) case 1:D(D(MY)R = MR
= D(D(MR))
(3) case 2:D(DMD(NY)R = DIDIMRYD(NR))
(4) case more than 2:
D(- - -DOMDND(L)R
=DDODD(- - -DANDNNDL)R
= DIDDODD(- - -DANDINRD(LRY)
=DODDD(- - - DMR)RIDNR))D(LR))
=DDDODDO(- - -DIMRNDINR)HD(LR))
=D( - D{MRYD(NR)D{LR))

Theorem 3.5 The scope of C8 can be extended as in T1. That is in any case, ‘

T2 DIOMDNRDLR)- - ) = DIDMDND(L)- - YDDMD(R)).

Proof DID(M)D{NR)D(LR}" " *)
= DIDMDDDNRD(LR) - +)))
=DIDMDIDDNDL) - - -)R))
=DIDDDNDL) - )RID(M))
= D(DMDND(L) -+ - )D(D(M)D(R))

Theorem 3.6 The scope of C9 can be extended as in T1. That is in any case,

T3 D(- - -DIDMDR)YDDNDR)DDXRDD(NR) - - )
" = DIDRMN- - HDRXY - ).
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Proof D(: - - DIDMDRNDIDINDRNDIDX)RDIDY)R - - *) :
=D(: * - DIDMDRNDDNDENDDDDX)RDD(Y)R)* - +)) (CH

=D{(- - - DIDAODERNDDNDRRDIDDEXNDINY)) - - *)R)) ' (T1)
= D{- - - DIODDR) DD NDRPDDXY - - - )R) (cn
=DDIDXY - - -IR) - -DIDAODENDIDINDRY)- - ) (44)
= D(DIDXY " - )R)" + - DDMNDNY) -+ - XDIDXY - - - )RD(ID(R))) T2
= DIDDEXY - - HRMN- - )DIDDXY - )R)R) (€h
= DDDXY - YRMN- + WDDIXY" - )R) (€2
=DDIDXY - YRMN- - )DRXY" - ) (C1)
=D(MN- - -D(D(XY" * JRND(RXY" - ) _ (Ad)
=DMN- - -D(D(XY" - - )RD(RXY~ -  )D(RXY "+ ) (C2)
= D(MN- - -DIDDER)IDXY - - - YDDDR)XY- - - NDRXY- - -) (1)
=D(MN- - -D@R)DRXY" ) _ (C6)
=DD(RMN- - )DRXY" ) (A4)

O

Theorem 3.7 The generative process in C2 can be extended to any space not shallower than that in which the

generated variable first appears.

Proof We consider the cases in which a variable is generated in spaces 0,1, and more than 1 space deeper than
the space of the variable of origin.
(1) case 0:D(D(D(- - -MYNL)G = D(DWD(- - -M)N)LYGG . (C5)
(2) case 1:DID(- - - MNLYG = D(D(D{: * - MIN) LG ' (C2)
(3) case more than 1: '

DDD(- - - MN)L)G

=DMDD(- - -MNLGYG (C2)
=DDD( - MNGLYG ' (A4}
=D(D(D(- - -MNG)GL)G (C2)
" =DOD( - MNGL)G (C2)

And so on. It is plain that any space not shallower than that in which G stands can be reached.
(I

Theorem 3.8 From any given PA-term, an equivalent term not more than two indicators deep can be derived.

Theorem 3.9 From any given PA-term, an equivalent term can be derived so as to contain not more than two

appearances of any given variable.

Proof Let M be any PA-term. If M has no variable, then the proof is trivial. So we may conﬁne our consideration
to the case of a variable e contained in M. Now by C1 and theorem 3.8,
- DI eNYDIDD(eM)P)FD eX)D(eY) - - -, where M, N,....P,
Q,....,X,Y,...and F stand for subterms appropriate to the term M,

=« * - D(DDD(ENDDNMAODD(MPIFD(eX)D(eY) - -+ (D)
= -+ - DDDD()DDDWINNNDD(eM)P)FD(eX)D el - - - (A2)
= DI DDDN)DDD(eM)P)FD(eX)D(eY) - * - (€1)
= - - DD()ODDN)YDDD(e) PYDIDMPYFD (eX)D(eY) - - - (A2,C1)

=+ - D(D()DDD(e)PYFDIDMPDDWIN)Q) - - D(eX)D(el) - - - : (A4)
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- DID(YDD(D(e)PYGD(eX)D(eY) - -
where G = FDID(MPYD(D(NYQ) - -+ .
D(D(- - - DD(DDDEPINDDD(eX)D{eY) * - DG (C1)
DD(: - - D(ODPND(ENDDDXOD(Y) - - - )e)G ' SRR Y

Definition 3.10 Ler a variable e in a space s, osciilate between the limits of its value M',U"

4y

@

©)

If the value of every other indicator in sy is U, the oscillation of e will be transmitted through s, and seen
as a variation in the value of the boundary of 54 to 541 Under this condition call s, transparent. _
If the value of any other indicator in s, is M', nothing will be transmitted through s, Under this condition
call s, opaque.

With regard to an oscillation in the value of a variable, the space outside the variable is either transparent

or opaque. { Principle of transmission)

Theorem 3.11 If PA-terms are equivalent in every case of one variable, they are equivalent.

3.2 Completeness and Independency
Theorem 3.12 (Completeness) The primary algebra is complete. That is, M = N can be proved in the

arithmetic if and only if M = N can be derived from the primary algebra.

Proof Because of the rules of algebraic manipulation, it is immediate that if an equivalence M = N is derivable

from

the axioms of primary algebra, then it is valid in the arithmetic.

Thus assume, conversely, that M = N is a valid arithmetic formula. We show now that M = N is derivable from

the axioms of primary algebra. The proof proceeds by induction on the number n of variables contained in M, N.

&)

@

n=0
In this case, M = N contains no variable, and we need to show that if M = N contains no variable, it is
derivable in the algebra, We see in the proofs of theorem 2.22 - 2.26 and corollary 2.27 that all arithmetical
equations are provable in the arithmetic. It remains to show that they are derivable in the algebra
In C3 let M = D(@) to give D(B)D(@) = D) and this is A1(Number). .
In C1 let M = @ to give IXD(@)) = @ and this is A2(Order). Thus the axioms of the arithmetic are derivable
in the primary algebra. and so if M = N contains no variable it is derivable in the algebra.
Assume that we have established the theorem for term containing less than # variables. Consider now terrms
M, N containing a total of » distinct variables. By theorem 3.8 and 3.9, we can reduce M, N to their
canonical form with respect to a variable e:

(1)  M=DD(@A)IDEAAs,

(E2) =D{D(e)B1)D(eBy)B;, :
since this reduction is proved with algebralc steps only. By hypothesis €7 FM =N, we will get the
Tollowing equation:

() DID(ADD(eAA; = D(D{e)B1)DHeB,)Bs,

Our target is to show that (*) is derivable in the primary algebra. Thus by substitution we find that

(E3) D(A1As=D(B)Bs ife=D(D),

(E4)  D(A2A;=D(B)B; ife=9,
to be arithmetically true. However, these two equations contain less than » variables, and thus they are, by
hypothesis, derivable in the primary algebra. Then we have the following steps:

=D(D(e)A1)D{eA)As (E1)
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= DID(D{(e)D(A )M eD(A21))As (€9)

=D(D(D(e)D(A)Az)D(eD(A)A3)) (A2)
=DDD()D(B)B3)D(eD(B,)B3)) (E3,E4)
= D(D{(e)B1)D{eB,)B; (A2,C9)
=N (£2)

Thus M = N with » variables is derivable from the axioms of the primary algebra if M = N with less than n
variables is derivable.

This completes the induction step and the proof.

0
Theorem 3.13 The initials (Position.and Transposition) of the primary algebra are independent. That is to say,
- given Position (Al) as the only initial, we cannot Jind Transposition (A2) as a consequence, and also given

Transposition (A2) as the only initial, we cannot find Position (Al) as a cbnsequence.

4 The calculus interpreted for logic

4.1 The system PC of propositional calculus

Let Lpc = <Lpe, ', V, LD be the propositional language consisting of an infinite denumerable set of variables
P, P2, P3.---, @ constant L (false) and the truth functional connectives; —(negation) and V/ (disjunction}. Then

we have the following. Also see Schwartz’s work [8] with reference to this section.

Definition 4.1 (i) The set of PC-formulas P.is defined inductively as fallows:
(1) All propositional variables and a constant | are PC-formulas (called atomic formulas).
(2) IfPis a PC-formula, then 2P is a PC-formula.
(3) If P and Q are any PC-formulas, then (PN Q} is a PC-formula.
(4) Nothing is a PC-formula except as required by (1), (2) and (3).

(i) Call any PC-formulas with no variables the closed PC-formulas.

The further connectives may be introduced as mechanisms for abbreviation of complex formulas made up with
= and V: conjunction PAQ, material implication P = ( and material equivalence P <> ( are the abbreviation
of 7(MPV ), TPV and (P > O)A(Q —* P), respectively. And also the constant L. can be defined by P

A P, Parenthesis are dropped when the intended grouping is clear, and note that = has priority over V.

Definition 4.2 (PC,the system of classical propositicnal calculus)
(i) This system is axiomatized by the following axioms and rules (originated with Hilbert and Ackerman}:
AN @PVP) > P
AP > (PVQD)
(A3)(PVQ) > (QVP).
(A4 (P~ > (RVP) 2> (RV Q)
(A5) L & (PAOP)
. (R1) Modus Ponens: .
IfPand P — Q, then infer Q.
(R2)-Uniform Substitution:
If P, then infer P(Q/p;), where the latter denotes the formula that is obtained from P by replacing every
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occurrence af the variable p; with an occurrence of the formula Q (and if p[; does not occur in P, then
P(O/p;) is just P).

(if) Provability in PC of a theorem is denoted by PC |- P.

Definition 4.3 (i) The semantics = (PC) for PC has as truth values the numbers land 0, standing true and false
respectively, and truth valuations are all the mappings V. P = {0,1} such that
(1) VippE{0,1}, (fori=12,..)
() (TP =1-WP),
(3) VPV Q) = max(V(P),V(Q)).
(i) A formula P is a tautology of = (PC) if V(P) = 1 for all valuatoins V of Z (PC). (we specify Z (PC). EP)

Notes that truth valuations act on abbreviated formulas in the correct ways. For example we have VIPAQ) <

V(P) = 1and V(Q)=1.
Theorem 4.4 (Completeness) P is a tautology of Z (PC) if and only if PC |- P.

4.2 The systems Cl and PC are Isomorphic
Defihition 4.5 A translation y of CI info PC may now be defined by the followings:
() yled=p: (fori=12,.)
2 y@=1,
(3) yDAH) ="y M),
@) vy MN)=y M)V y (V).

Proposition 4.6 The mapping vy is well-defined and one-to-one. Hence, the inverse translation v is also well-

defined and one-to-one.
Theorem 4.7 CI is isomorphic with PC. That is, CI | M = (D) iff PC |- y (M) for any CI-term M.

Proof By completeness theorem of CI and PC, we get the following results for any CI-term M:
Cl |-M=D(@) iff PA | M=D®) . (Th.3.12)
PC |-y (M) iff Z(PC) |y (M) (Th.a4)
So, we need only to show the following proposition: '
(") PALM=D(@) iff Z(PC)Ey®™)

At first we observed that a one-to-oné correspondence between valuations v of P4 and truth valuations V of 3
(PC) is given by v(e) =m iff W(p) = 1 which implies that we) = u iff WV{p) = 0, since the respective
valuation mappings are uniquely determined by their action on the e; and p;, (i = 1,2,...). Hence it is sufficient to
show: where V corresponds to v,

viMy=m iff V(y (M))=1

We show this by induction for the number of nesting indicators of a term. Suppose that M has depth n and that
V corresponds to v.

(1) n =0: there are two possibilities.

() M = e (i=12,.) then y (e} = p;, by definition of 7,
so v(M) = m iff V(y (M)) = 1 by the correspondence of v and V.
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(i) M = @: then v (M) = L, and the case holds by default. There is no v such that w(i&#) = m, and there is
no Vsuch that V(1) =1.
(2) n> 0: again there are two possibilities.
() M = D(N): then N has depth less than n and the induction hypothesis yields:
viNy=m iff V(y (N)=1.

This implies that
viNy=u iff Wy (N)=0. . (1)
Thus, ' ’
vM)=m iff v(N)y=u. (def. of v)
iff V(y W)=0. | | (by (1))
iff V(0 y(@W))=1. (def. of V)
iff V(y (M))=1. ' (def. of )
(ify M = NL: then each of N and L have depth less than », and the induction hypothesis provides
viNy=m if V(y (Wp=1 @
vily=m iff V(y(L)=1. 3)
Then .
viM)=m iff ecither v(N)=morv(L)=m. ] {def. of v)
If either V(y (M) =1orV(y L) =1.- (by (2).3))
iff V(y NV y @) =1 ' (def. of V)
iff V(y (NL))=1. . (def. of )

This completes the proof.
The following theorem shows that equality in € is isomorphic with logical equivalence in PC.

Theorem 4.8 For all equations M = N of CI, CI= M = N if and only if PCF v (MY< 5 (N).

FProof Since y'l is well-defined, theorem 4.7 yields
PCLy () €y (V) iff CT |y (y (M) €y (W) = D(D).
Thus, it is sufficient to show that
CIFyYy M)y W)=D@) iff CI -M=N.
But then, by the completeness of CI with respect to PA this makes it sufficient to show:
PA Fy Ny M)y (N)=D(@) iff PAF M=N.
By definition of y , and the definition of the abbreviating connective <, y‘l( ¥ (M) >y (N)) is the term of CT
D(DDAMNDD(N)M)). (Denote this term by G)
Suppose PA F G = D(@). Then v(G) = m, for all v in PA, By inspection of G, for any v, if v(M) # v(N), then
V(G) #m. Hence, for all v, v(M) = v(N), and PA EM=N.
Next suppose PA E M = N. Then, for all v in PA, either v(M) = v(N) = m or v(M) = v(N) = u. By inspection of
G, in either case v(G) = m. Thus, PA EG= D).
l

5 Conclusion _

‘ The calculus of indication proposed by G. Spencer-Brown may be regarded as an algebraic system consisting
of two elements: a void space and a c¢ross which reflects the operator-operand polarity, and two binary
operations: juxtaposition and a kind of exponentiation. In order to show explicitly how these operations and thier

polarity execute, at first, we defined a term reduction representation arised in the calculus of indication, and then
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introduced a formal theory €I, corresponding to the primary arithmetic, based on I*-equality of CI-terms.
Moreover, we also introduced an algebric theory PA of I*-equality corresponding to the primary algebra in the
same manner of his book [9], and then demonstrated an interpretation of PA within the classical propositional
logic by guiding principle of appendix 2 in his book.

Several scholars ([1],[3],[7]) have already examined the relationship of the calculus of indication to other
Boolean algebra with some distinct primitives. In [1], Banaschewski showed that the primary algebra may be
isomorphically mapped into Boolean algebra with V (inclusive addition) and B (exclusive addition) as
primitives. We will review the result in our terminology as follows: Let Aps = <L¢yp, D >(=Lcy) be the primary
algebra and Ag = <L, V,P,0,1> Boolean aigebra. Now if we map the set {@, D(@)} into the set {0,1}, then we
can define any juxtaposition xy in Apa by an inclusive addition xV/y in Ag because it holds that (A1} DHYD(B) =
D(@) and (A6) M = M@ in definition 2.21 imply (1) 1V1 =1, (2) 1V0=1,(3) 0V1 =1 and (4) OVO = 0.
Moreover, we can define any exponentiation D(x) in Apa by an exclusive addition x <5 1 in Ag because that (A2)
DID@) =0, (A M= M and (A6) M = M@ in definition 2.21 imply (31D 1=0,) 1L 0=1,3 0L 1=
1 and (4) 0 €D 0 = 0. Hence the primary algebra PA can be viewed as Boolean algebra Ap. Conversely, if we
map the set {0,1, xVy, x D y} into the set {@, D(@), xy, D(DxX)Y)D(xD(y))], then A can be viewed as PA.
Note that when we consider the indicational forms of Boolean equations, several notions condense into one, that
is to say, the distinctor D() may have both a value 1 and an operator exponentiation €. This condensation
possess an advantage of computation in considering the indicational forms of Boolean equations. Furthermore,
Kohout and Pinkava showed in [7] that the primary algebra PA also may be isomorphically mapped into the dual
of Boolean algebra Apg, ie., Ag = <Ly, A, € ,0,1> where A(logical multiplication} is the operation dual to V
and <> (logical equivalence) the operation dual to & with the following mapping: (@, D(@). xy, D(x)} = {1, 0,
x/\y, x>0). Hence we have observed that the primary algebra can handle by itself several types of Boolean
algebra. -

G. Spencer-Brown has also proposed re-entry forms in his treatment of the second order equations. Here one
simple example of the re-entry form is a form £, that is identical with parts of its contents, i.e., f= ¢ (f) where ¢
is some indicational form containing f as a variable. Now if we consider the most simple reentrant form (1) f' =
D{f), then we have the following:

@ =D(D(p)p) (A1)
= D@D ' (R2)
=D{ff) (0
=D (C5)
= f . . (1.
= D({@). (1.R1)

This equation: @ = D(@) leads to a contradication in the primary algebra. In [11] and [12], Varela extends
Brown'’s system to the consistant one by adding a third value, autonomous stste (we employ A(*) instead of the
original self-cross), which represents a temporal oscillation of erms (also see [S]). In his calculus (called the
extended calculus of indication) a simple re-entry form f = D(f) may view as the recursive action of f = D(f),
thus we have: '
D@y = DID{D)y = DIDD@Y) = -,

and the autonomous state intends to a continucus oscillation of forms in time, that is to say, f= D({f) =
DODDDC-N)) = A(¥). Now if we define the set of ECI-terms F as follows:

(1) All variables, a self-variable * and constant @ are ECI-terms {called azoms)

(2) If M and N are any ECI-terms, then (MN) is a ECI-term (called a calling)

(3) If M is any ECI-term, then D(M) is a ECI-term (called a distinction)
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(4) If M is any ECI-term, then A(M) is a ECI-term (called a self-distinction),
then the formal theory CI and i.tsl algebraic counterpart PA could be extended to fit Varela’s calculus by
axiomatizing the following; respectively: .
(A1) (@YY = D(D) where V is a marker(i.e, D{(D), @, A(*)) ~ (Dominance)

(A2) D¥D)=0 (Order)
(A3) DIA(FY) =A(¥) (Constancy}
(A4) 24(%) = A(%) (Number)
(Al) D(DMNIM =M ’ . : (Occultation)
{A2) D(ID(ML)D{NLY) = D{IDMOD(NV)L ' ' (Transposition)
(A3) D(MA(*)M = MA(*) ' (Autonomy)

It was proved in [13] that Varela’s extended calculus was a 3-valued extention of Brown’s calculus. In [6],
Orchard firstly pointed out the possibility that Brown’s calculus can be viewed as one of non-Fregean system
developed by Suszko [10]. The sentential calulus with identity (SCI for short) was proposed ny Suszko to
realize some philosophical ideas of I.. Wittgenstein’s Tractarus. Here SCI is a classical two valued logic with an
additional nontrivial connective identity = and it axioms, that is, = is not only an equivalence relation but also
a congruence relation and at least as strong sa a material equivalence <>. So it holds that (A = B) — _(A < B),
but not the converse {called Fregean axiom). Since both calculi Cf and SCI deal with some situations specified
in a distinction D{() or an identity =, it would be of interest to know how to interpret each other and what

modifications are needed in the interpretation.
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