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Abstract

	 We have previously reported that a control system configuration can be designed for a 

drying oven using a mathematical state model, which we described using a transfer function with 

a quadratic time delay. Herein, a one-dimensional advection-diffusion equation (ODAE), in which 

the object model has a constant velocity v, defines the state of the drying oven in the target 

system.

	 The measurement of true state quantity is difficult for such a model. Therefore, we propose 

that the state estimation of such a model subjected to state-dependent noise is possible using 

optimal filter theory based on functional analysis. For state-independent noise, we can use the 

Kalman filter for conventional state estimation.

Keyword: stochastic partial diffusion equation, optimal filter, eigenvalue problem，drying 

oven，impregnating solvent

1 Introduction

	 In general, a machine produces sheet type films. Its function is to first impregnate a solvent, 

especially an organic solvent, into the films, and then control the thickness of the impregnated 

film using a heat source in the drying oven. Such a machine is called ”impregnating machine,” and 

it produces shaped insulator films. Some companies have developed various types of machines 

that process many films using various solvents in a conventional manner. As a result, many 

different types of films have been produced.

	 In previous studies related to impregnating machines, it is widely recognized that the 

impregnated solvent on sheet-type films gets dried while diffusing the heat in a drying oven, or 

the sheet-type films may themselves move during the process of receiving heat in the form of 

steam in the drying oven[1, 2, 3]. It is considered that the most important process units of the 

impregnating machine are the impregnating solvent and the drying unit.

	 Horiuchi et al. proposed a drying simulator which calculates the state variables that are 

related to the drying condition on impregnated films using the thermal diffusion in the drying 
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oven[4]. We reported that the main state variables are given by an internal vapor pressure 

function to realize the design of a control system configuration[8, 9]. From the above description, 

the mathematical method uses a transfer function with a second-order time delay model as a 

more specific heat diffusion function in the drying oven[12]. Our previous study also provides a 

mathematical model in which the impregnated films move with a velocity “v” in a certain 

direction[6, 1]. The ordinary differential equation is given by the Lagrange Differential Operator 

(LDO). We also reported that the state of thermal diffusion to be discussed is defined by the one-

dimensional advection diffusion equation (ODAE)[13].

	 Instead of focusing on the internal reaction when impregnating films, we were to design a 

dynamic state model on a control system. To do this, it is necessary to derive the mathematical 

model that describes the situation in which the solvent vapor is diffused by the vapor pressure 

unit.

	 In general, the Kalman filter is used in state estimation methods applied to finite-dimensional 

space. However, it is possible to take advantage of the optimal filter theory in infinite dimensional 

stochastic space[5].

	 In this study, we use the stochastic advection?diffusion model in infinite dimensional space. 

However, it is difficult for such a model to measure the true state quantity of the data. Therefore, 

we must utilize an optimal filter when receiving state-dependent noise in a drying oven[5, 13]. For 

state-independent noise, we can utilize the Kalman filter for conventional state estimation. In 

addition, we verify the state estimation using numerical results. To the best of our knowledge, 

previous studies have not clarified such an estimation problem extensively.

2 Basic mathematical model and definition of the physical quantities

	 With respect to a model that remains stationary for both the films and heat source in the 

drying oven shown in Fig.1, the physical quantities used in this section are described as follows[6, 

7, 11].

	 Assuming that the vapor pressure is derived using the function of the moisture q(t) in a 

Fig. 2: Oven standard modelFig. 1: Static model in the drying oven
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drying oven, the vapor pressure is derived by

� (2.1)

where, the moisture function q(t) is defined as the following equation:

Definition 1 Moisture function q(t)

� (2.2)

where r(t) is the ratio of drying, r(t) = g2[Pi(t)-P0(t)], Pi(t) is the vapor pressure in the drying oven, 

and P0(t) is the external vapor pressure.

	 The vapor pressure derived by the gradient on the average moisture mv(t) on the films in 

the drying oven, is defined by

Definition 2 Gradient on the average moisture mv(t) on the films

� (2.3)

where, mv(t) is derived by

� (2.4)

where hi(t) is the amount of heat transfer and h0(t) is the heat consumption. Now, hi(t) is described 

by

� (2.5)

where, H is the function representing a physical constraint.

　　gk(◦), k = 1,2,3,4 in Eqs. (2.1)-(2.5) represents the constraint function on the each physical 

quantity.

In this case, the transfer function W(s) in such a drying oven is derived by

� (2.6)

where Q(s) is the Laplace transform of the moisture spring from the solvent obtained using the 

heat source in the drying oven, and M(s) is the Laplace transform of the heat source function (the 

temperature in drying oven)[13].

	 Such a thermal system model is generally derived as the time delay with a second-order 

system:
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� (2.7)

where, let KG，a1，a2，a3 be a positive real number respectively.

	 From Eqs. (2.6)-(2.7), the following ODE is obtained formally by

� (2.8)

where, the initial condition is q(0) = q0[12].

	 The state variables on the object are considered as follows.

This is a mathematical model for which the films with the impregnated solvent represent the 

upper layer condition dried by the heat source under certain conditions (See Fig.2).

	 Since the moisture is approximately equal to the vapor pressure, we let the vapor pressure 

function be C(x, t).

	 In addition, from Eq.(2.6), let the heat source (the temperature in the drying oven) again be 

f (t). Then, W(s) is derived by

� (2.9)

	 The model of Eq. (2.9) shows that the thickness of the impregnated solvent on films is 

proportional to the value of the moisture vapor pressure function based on time. In the case of a 

constraint condition such as heating the impregnating solvents, the thickness of the impregnated 

solvent on films decreases. However, the thickness of the films themselves maintains a constant 

value.

	 To mathematically model the continuous films, we assume that the films move with velocity 

v in the direction.

	 To describe the mathematical model, the Lagrange differential operator D/Dt is introduced 

by

� (2.10)

where x denotes the spatial variable in the direction of movement[13].

	 From Eqs. (2.8) and (2.10) can be rewritten by

� (2.11)

Similarly, Eq. (2.9) is derived by

� (2.12)
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	 For the state variable below, it is assumed that Eq. (2.12), which is described by the internal

vapor pressure function C(x, t) is the target model system.

	 From Eqs.(2.10) and (2.12) can be rewritten by

� (2.13)

Assuming that the diffusion of moisture moves in one direction, by ignoring these terms

 in Eqs. (2.13) and (2.14) is described as follows:

� (2.14)

Equation (2.14) represents ODAE, where Dc denotes the diffusion coefficient and  f (x, t) denotes 

the distribution function in the thermal diffusion state.

	 As the described above, it can be expressed using the PDEs in Eq. (2.14), in which the 

movement model of the continuous films has the state variable of the internal vapor pressure.

3 State estimation model subjected to state-dependent noise

Figure 3 shows the model on this equipment. From our previous study, Figure 4 shows the model 

of the impregnating solvent on the films[1]. In this study, we discuss the x-axis direction rather 

than the z-axis direction.

We describe the model subjected to state-dependent noise as follows.

� (3.1)

� (3.2)

where Lx(・) represents a diffusion operator.

� (3.3)
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Then the observation operator is as follows.

� (3.4)

Here according to Hata’s analytical method, we define a state variable C(t, x) as follows[5].

Definition 3 State variable C(t, x)

� (3.5)

� (3.6)

Definition 4 Observation variable Z(t, x)

� (3.7)

where C‹(t, x) is the estimated variable of C(t, x).

Definition 5 Estimated variable of C‹(t, x)

� (3.8)

where, C‹(t, x) is derived as follows.

� (3.9)

Moreover, when X(t, x) is an element of the square integrable function space on D taking a scalar 

value, the inner product is as follows.

Fig. 3: Actual plant system Fig. 4: Application of the model to material
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� (3.10)

Using this notation, Eq. (3.1) is as follows:

� (3.11)

where followings are satisfied.

� (3.12)

Furthermore, the observation system is as follows:

� (3.13)

where the followings are satisfied.

� (3.14)

The optimal filter for the estimated variable C‹(t, x) defined in Eq. (3.9) is constructed as follows:

� (3.15)

where R(t, x) and S(t, x, x′) are determined to satisfy the following conditions:

� (3.16)

� (3.17)

According to Hata’s analytical method and the above definitions and conditions, we obtain the 

following.

� (3.18)
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Then the optimal filter represents as follows:

� (3.19)

where C‹(t) satisfies the following equations:

� (3.20)

� (3.21)

As a result, we can obtain the optimal filter and the equation to be satisfied as follows:

� (3.22)

� (3.23)

� (3.24)

where Mz(t) satisfies as follows.

� (3.25)

Further,

� (3.26)

また，

Finally, from Eq. (3.19), the optimal filter gain is obtained by Eq. (??).

� (3.27)

� (3.28)
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4 Eigenvalue problem subjected to state-dependent noise

Here we focus on an eigenvalue problem for Eq. (3.1), which can be described as follows.

� (4.1)

Definition 6 Eigenvalue problem

� (4.2)

where ϕ(t, x) represents an eigenfunction and λ is an eigenvalue. Both these terms are discrete

eigenvalues.

	 Using Green’s theorem, we transform Eqs. (4.1) and (4.2) to obtain the following.

� (4.3)

We rewrite Eq. (4.3) and obtain the following.

� (4.4)

Here as the first term on the right hand side in Eq. (4.4) represents zero, as indicated in Eq. (3.2),

the equation can be rewritten as follows.

� (4.5)

From Eq. (4.5), we can obtain as follows.

� (4.6)

where Eq. (4.6) satisfies as follows.

� (4.7)

� (4.8)

� (4.9)
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Therefore we can obtain as follows.

� (4.10)

where C(t) ∈U ∈ H2(D).

In the same manner, we rewrite Eq. (4.10) to obtain the following.

� (4.11)

Further Eq. (4.11) satisfies Eqs. (3.12), (3.14).

Then, Eq. (3.22) is described as follows.

� (4.12)

Eqs. (3.23)-(??) are obtained as follows.

� (4.13)

� (4.14)

where P(t) and Mz(t) are derived as follows.

� (4.15)

� (4.16)

As described above, according to Hata’s analytical method, we can construct an optimal filter for 

a convection?diffusion system that receives state-dependent noise on the research target as Eqs.

(4.12)-(4.16).

5 State estimation model subject to state-independent noise

Here we focus on the following target model.

� (5.1)

� (5.2)

� (5.3)

The discrete eigenvalue λi of the model in Eq. (5.1) on C(t) ∈ H2(D) satisfies the following
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definition.

Definition 7 Model being used as a discrete eigenvalue

� (5.4)

Furthermore, the observation system is as follows.

Definition 8 Observation system model

� (5.5)

Using the Kalman filter, the estimated variable C‹(t) and secondary moment of C(t), respectively,

are defined as follows.

Definition 9 Estimated variable C‹(t) and secondary moment U(t) of C(t)

� (5.6)

� (5.7)

Then, from the analysis of Eqs. (4.1)--(4.11), Eqs. (5.4)--(5.5) can be obtained for the model

of Eqs. (5.1)--(5.3).

6 Numerical Example

The calculated results are shown in Fig.5--Fig.13. As shown in Fig.10, in this system, the first

eigenvalue of the model system reflects a strong effect, which affects a wide range of time over

the spatial domain. As shown in Fig.13, the outlet-side neighborhood is close to the model state 

in the case of an advection.diffusion system. Fig.14 represents the processes of both system 

model and estimation model. Then Fig.15 represents the processes of both system model and 

observation model. Therefore, for simplicity, we calculated only the first eigenvalue for diffusion 

coefficient μ = 0.5.

� (6.1)

For σ = 0.3, we constructed an observation system using ϕ(xm) = 1.1 and σe = 0.1. In this case,

we estimated the model represented by Eq. (5.1) successfully.
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Fig. 6: Three eigenfunctions in a diffusion 
process

Fig. 5: Solution of a diffusion-type stochastic
partial differential equation (μ = 0.5)

Fig. 7: Function value versus three 
eigenvalues

Fig. 8: Total function value versus sum of 
three eigenvalue function

Fig. 9: State variable and measurement data 
versus

Fig. 10: State variable and measurement 
data versus time-space
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Fig. 12: Wiener processFig. 11: Solution process of stochastic 
partial differential model versus time

Fig. 15: System model, observed and 
estimation data

Fig. 13: System model and observation 
processes

Fig. 14: Estimation process of the system 
model by Kalman filter
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7 Results

In this study, we utilized a transfer function derived from a advection-type stochastic partial 

differential equation using a dynamic model. In addition, the transfer function can be obtained 

from a stochastic partial differential equation using a static model. Using the transfer function, we 

proposed a stochastic partial differential equation model that is subject to both the presence or 

absence of state-dependent noise relatively easily.

	 Using an optimal filter for the estimation problem that is subject to the state-dependent 

noise system, we could easily estimate state temperature in a drying oven. In addition, for the 

stateindependent noise system, we used the Kalman filter for conventional estimation. 　There 

are still many problems that require identification of various parameters and functions before 

practical application becomes feasible. However, our approach is useful from the viewpoint of the 

application of control theory, which is derived from a rich partial differential model.
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