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Abstract

In this paper we will introduce a referential relation between pair-sentences similar to
the identity connective ≡ in SCI. Here pair-sentence statements of the form (A,B) read
as “A is referential to B”. Then by interpreting the pair-sentence (A,B) as a sequence of
referential relation such that the referential recursive pattern A B0 B1 B2 . . . B0 B1 B2 . . .
holds, we will formalize a pair sentential calculus and represent the behavior of Liar sen-
tence. To formalize the pair sentential calculus, we firstly introduce the stage numbers i, j
in which each of pair-sentence holds, i.e., (Ai, Bj) and which means a situation of A at
a stage i is referential to the situation of B at a stage j. We also introduce a referential
cycle number of (Ai, Bj) and by using of this cycle number, we may classify pair-sentences
into two categories, that is, categorical and paradoxical. Then each Liar sentence has a
referential cycle number of n such that n ≥ 2 and is paradoxical.

Keywords: SCI, pair-sentence, Liar paradox, four-valued logic, paraconsistent logic.

1 Introduction

By the inspiration of L. Wittgenstein’s Tractatus in which facts are constructed by states of
affairs (or situations), R. Suszko attempted to formalize an ontology of facts in Tractatus on
the basis of Fregean scheme, and called it non-Fregean logic [12]. The sentential calculus with
identity, SCI in short, is the most simplified version of his non-Fregean logic and obtained by
adding the sentential identity connective ≡ to the classical logic. Statements of the form A ≡ B
read as “A is identical with B” which means that the referent of two sentences are identical in
the basis of Fregean scheme. In SCI, it is not assumed that all true (and similarily, all false)
sentences have a common referent, called the Fregean axiom. Thus, we may think that SCI is
addressing the area of many-valued logic, since sentences are allowed to have more than two
values. But we must also be noticed that this is the referential many-valuedness, quite distinct
from logical many-valuedness. If applying the theory of inference relation (finitary consequence
operation) on the set of all formulas, then for any logic considered as an inference relation �,
we can find sets V of 0 − 1 valued functions defined for all formulas, called logical valuations
[13], that is, every logic may be regarded as logically two-valued. On the other hand, for the
given formalized language L, we may consider any algebraic structure A similar to L and maps
of L to A satisfying some morphism conditions, called algebraic valuations. Then the formulas
may have many algebraic values (admissible referents).
In this paper we will introduce a referential relation between pair-sentences similar to the

identity connective ≡ in SCI. Here pair-sentence statements of the form (A,B) read as “A is
referential to B” which means that the referent of a sentence A is referential to the referent of
a sentence B. When doing logical reasoning, it is usually assumed that several fundamental
postulates implicitly hold by a priori. For example, the principle of identity says that “A is
always A and not being ¬A”, the principle of contradiction says that “A is not both A and
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¬A”, and the principle of excluded middle says that “either A is B or A is ¬B”. Here if we do
not admit these fundamental postulates, then several paradoxes appear in public and we could
not proceed correctly to the formal reasoning. In order to overcome the matter, there exist
several approaches to the problem from different point of views, that is, paraconsistent logic
[2, 11], a theory of truth [10], naive semantics [5, 6] and self-reference/recursive forms [8, 9].
Here we will interpret pair-sentence (A,B) as a sequence of referential relation such that the
referential recursive pattern A B0 B1 B2 . . . B0 B1 B2 . . . holds by following the ideas of H. G.
Herzberger and L. H. Kauffman. Then for the principle of identity sentence “A is A”, we will
get the pair-sentence (A,A) which satisfies a sequential form A A A A A A . . .. Similarly, for
a simple Liar sentence “this sentence is not true”, we will get the pair-sentence (A,¬A) which
satisfies a sequential form A ¬A A ¬A A ¬A . . .. We have typically four referential relations,
that is, (�,�), (⊥,�), (�,⊥) and (⊥,⊥). If we will axiomatize for a pair-sentence calculus
similar to SCI manners, this system can be seen one of four-valued logic [1, 3], and could not
deduce the principle of contradiction and excluded middle.
The logical axioms for SCI consist of two sets of schemata TFA (truth functional axioms)

and IDA (identity axioms). Here IDA is the following:

(E1) A ≡ A

(E2) (A ≡ B) → (B ≡ A)

(E3) (A ≡ B) ∧ (B ≡ C) → (A ≡ C)

(C1) (A ≡ B) → (¬A ≡ ¬B)

(C2) (A ≡ B) ∧ (C ≡ D) → (A ∧ C) ≡ (B ∧D)

(C3) (A ≡ B) ∧ (C ≡ D) → (A ∨ C) ≡ (B ∨D)

(C4) (A ≡ B) ∧ (C ≡ D) → (A → C) ≡ (B → D)

(C5) (A ≡ B) ∧ (C ≡ D) → (A ≡ C) ≡ (B ≡ D)

(SI) (A ≡ B) → (A → B)

(E1)–(E3) and (C1)–(C5) show that the identity connective ≡ is an equivalence and congru-
ence relation respectively. From (SI) we get A ↔ B �⇒ A ≡ B in general, which means SCI is
non-Fregean logic. Every equation in the logical theorems of SCI is only a trivial (i.e., A ≡ A).

SCI

WF

WH

WT

W1

W2

WB

Figure 1: Relations between extensions of SCI

Moreover, many logics can be reconstructed as Suszko’s theoreies of situation. For example,
we define α ≡ β ⇐⇒ �(α ↔ β) in modal logic, then we have WT — S4 and WH — S5. Also
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we define α ≡ β ⇐⇒ (α ⇔ β) in 3-valued �Lukasiewicz logic where ⇔ is a �L3 equivalence, then
we have SCI — �L3.
Here we consider a simple Liar sentence : “This sentence is not true”. Of cource, SCI could

not deal with the Liar sentence. Let’s define A=”This sentence is true”, then A ≡ ¬A because
the referent of two sentences A and ¬A are identical, but it’s impossible logically by (SI). So,
we will introduce a referential relation of pair-sentence similar to identity ≡, i.e., (Ai,¬Aj) : a
situation of A at a stage i is referential to the situation of ¬A at a stage j. In this paper, we
will formalize a pair sentential calculus and represent the behavior of Liar sentence.

2 PSC Logic

In this paper we will propose a pair sentential calculus, PSC in short, which was obtained from
the classical sentential calculus by adding a new pair-sentence constructor ( , ) and its axioms
of the form (Ai, Bj) which means “A at a stage i is referential to B at stage j” where i and j
are referential stage numbers that A and B hold respectively.

2.1 Definitions

The formulas FORP of a language LP of the sentential calculus with pair-sentence constructor
are generated in the usual way from an infinite set V p of sentential variables and constants �
(true), ⊥ (false) by the standard truth functional connectives ¬( negation), ∧ (conjunction), ∨
(disjunction) and → (material implication) as well as the pair-sentence constructor ( , ), i.e.,
LP =< FORP ,¬,∧,∨,→, ( , ),�,⊥ >. Also we may use the same parentheses as auxiliary
symbols even assume that the priority of each connective and constructor are weak as ¬, ∧, ∨,
→, ( , ) in order. Throughout this paper the letters p, q, r, p1, . . . will be used to denote any
variables; the letters A, B, C, . . . will denote formulas of a PSC language LP ; the letters X,
Y will denote sets of formulas. We will also use the following abbreviation: (i) � = (�,�), (ii)
⊥ = (⊥,⊥), (iii) ∇ = (⊥,�), (iv) � = (�,⊥) and (v) A = (A,A). We will introduce several
terminology with pair-sentence as the following.

Definition 2.1 (Pair-sentence)

(1) If A is a subformula of B, then we say that pair-sentence (Ai, Bj) is a circular referential
relation, where i and j are referential stage numbers that A and B hold respectively.
Moreover, if A is not a subformula of B, then pair-sentence (Ai, Bj) is a non-circular
referential relation.

(2) For a circular referential relation (Ai, Bj) such that the referential recursive pattern Ai Bj
0

Bj+1
1 Bj+2

2 · · ·Bj+n
0 · · · holds, the total referential stage numbers of Bj

0 being recursively
returned to itself is called a referential cycle number of (Ai, Bj) and the cycle number
is n, µ(Ai, Bj) = n in symbol. On the other hand, for a non-circular referential rela-
tion (Ai, Bj) such that the referential recursive pattern Ai Bj Bj+1 Bj+2 · · · holds, the
referential cycle number is always 1, i.e., µ(Ai, Bj) = 1.

(3) If µ(Ai, Bj) = 1 then we say that (Ai, Bj) is categorical and we will omit each referential
stage number like (A,B). On the other hand, if µ(Ai, Bj) ≥ 2 then we say that (Ai, Bj)
is paradoxical.

(4) The referential stage numbering of composed formulas is the following.

(i) (¬A)i ⇐⇒ ¬Ai

(ii) (A ∧B)i ⇐⇒ Ai ∧Bi

(iii) (A ∨B)i ⇐⇒ Ai ∨Bi

(iv) (A → B)i ⇐⇒ Ai → Bi
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(v) (A,B)i ⇐⇒ (Ai, Bi)

The axiomatic system PSC for the language LP is defined by the following way.

Definition 2.2 (PSC system) The axiomatic system PSC consists of the two sets of schema
TFA (truth functional axioms) and PSA (pair-sentence axioms) below. Furthermore PSA
splits to the three sets of schema EA (equivalence axioms), CA (congruence axioms) and PA
(pair-sentence axioms). The rule of inference is only modus ponens.

(A1) A → (B → A)

(A2) (A → (B → C)) → ((A → B) → (A → C))

(A3) A ∧B → A

(A4) A ∧B → B

(A5) A → (B → (A ∧B))

(A6) A → A ∨B

(A7) B → A ∨B

(A8) (A → C) → ((B → C) → (A ∨B → C))

(A9) ¬A → (A → B)

(A10) A ∨ ¬A

(E1) (A,A)

(E2) (Ai, Bj) → (Bj , Ai)

(E3) (Ai, Bj) ∧ (Bk, Cl) → (Ai, Cl+(j−k))

(C1) (Ai, Bj) → ((¬A)i+1, (¬B)j+1)

(C2) (Ai, Bj) ∧ (Ci, Dj) → ((A ∧ C)i, (B ∧D)j)

(C3) (Ai, Bj) ∧ (Ci, Dj) → ((A ∨ C)i, (B ∨D)j)

(C4) (Ai, Bj) ∧ (Ci, Dj) → ((A → C)i, (B → D)j)

(C5) (Ai, Bj) ∧ (Ck, Dl) → ((Ai, Ck)m, (Bj , Dl)n)

(P1) (Ai, Bj) → (Ak ↔ Bj+(k−i))

(P2) (Ai, Bk) ∧ (Ai, Bj) → (Ai+(k−j), Bk)

(P3) Ai → Ai±n where n ≥ 0

(P4) Ai → Aj where A is related to other formulas only as the non-circular referential relation.

(Mp) A A → B
B

The axioms in TFA with modus ponens as the single rule will give an axiomatic system
CL for the classical sentential logic, and if we will restrict the pair-sentence formula (Ai, Bj)
to a non-circular referential relation, then PSC is collapsed into pure SCI system because of
regarding (A,B) as A ≡ B.

Definition 2.3 (Derivability) Let X be a set of formulas in a language LP , A a formula and
PSC a system in LP . Then we say that A is derivable from X in PSC, we write PSC, X � A
iff there is a sequence of formulas B1, . . . , Bn(n ≥ 0) such that every formula in the sequence
B1, . . . , Bn, A is either a theorem of PSC, or belongs to X, or is obtained by (Mp) rule from
formulas occurring before it in the sequence, where if X = ∅, we write PSC � A, and we say
that A is a theorem of PSC.
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2.2 Elementary Results

Theorem 2.4 If we will restrict every pair-sentence formula (Ai, Bj) to the non-circular ref-
erential relation (A,B), then PSC is collapsed into pure SCI system.

Proof. Assume that all pair-sentences (Ai, Bj) are only the non-circular referential relation.
Then we can omit each stage number because of its referential cycle number is 1 by Definition
2.1(2). In this case we can be identical (A,B) with A ≡ B in SCI owing to the meaning of pair-
sentence. Then axioms EA and CA show that the pair-sentence (A,B) satisfies an equivalence
and congruence relation respectively. Moreover axiom (P1) show that (A,B) → (A ↔ B) holds.
So all axioms need for SCI are satisfied by PSC.

�

Theorem 2.5 While PSC is inconsistent as the ordinary logic, it is consistent as the patho-
logical logic.

Proof. If we will consider any circular referential relation (Ai, Bj) in SCI, then it is incon-
sistent, but consistent in PSC because each stage of pair-sentence is closed under classical in
itself.

�

Theorem 2.6 For any circular referential relation (Ai, Bj) where (i < j) there exists a natural
number n ≥ 2 such that µ(Ai, Bj) = n [6].

Theorem 2.7 For any referential stage number i, j, k such that i < j < k, the following are
logical theorems of PSC.

(1) (Ai, Bk) ∧ (Ai, Bj) → (Bj , Bk)

(2) (Ai, Bk) ∧ (Aj , Bk) → (Ai, Aj)

(3) (Ai, Bk) ∧ (Aj , Bk) → (Ai, Bi+(k−j))

(4) (Ai, Bj) ∧ (B → C)j → (Ai, Cj)

(5) (Ai, Bj) ∧ (A → C)i → (Ci, Bj)

Proof. (1) Suppose (Ai, Bk) ∧ (Ai, Bj). Then we have (Ai, Bk) ∧ (Bj , Ai) by (E2). So we
get (Bj , Bk) by (E3). (2) is similar to (1). (3) Suppose (Ai, Bk) ∧ (Aj , Bk). Then we have
(Bk, Ai)∧ (Bk, Aj) by (E2) twice. So we get (Bi+(k−j), Ai) by (P2). Hence we get (Ai, Bi+(k−j))
by (E2). (4) Suppose (Ai, Bj) ∧ (B → C)j . Then we can deduce C at stage number j by (Mp).
So we get (Ai, Cj). (5) is similar to (4).

�

Theorem 2.8 For any pair-sentence form of (Ai,¬Aj), the referential cycle number of (Ai,¬Aj)
is 2(j − i).

Proof. Suppose (Ai,¬Aj). Then we have (¬Ai+1,¬¬Aj+1), i.e., (¬Ai+1, Aj+1) by (C1). So
we get (Ai,¬Aj) ∧ (¬Ai+1, Aj+1) → (Ai, A2j−i) by (E3). Hence the referential cycle number is
µ(Ai,¬Aj) = (2j − i)− i = 2(j − i).

�

Theorem 2.9 For axiom (E2) (Ai, Bj) → (Bj , Ai), whether both of (Ai, Bj) and (Bj , Ai) are
circular referential relations or not is identical.

Theorem 2.10 Suppose that the pair-sentence form of (A0,¬A1) holds. Then ⊥ is a logical
theorem of PSC under the axiom (P3) Ai → Ai±n where n = 3 [4].
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Proof. Suppose (A0,¬A1).
(1) [A0] by Hypothesis
(2) ¬A1 by (P1): A0 ∧ (A0,¬A1) → ¬A1

(3) [¬A2] by Hypothesis
(4) A1 by (3) and (P1): ¬A2 ∧ (A0,¬A1) → A1

(5) (⊥)1 by (2) and (4)
(6) (⊥)2 by (P4)
(7) A2 by (3) and (6)
(8) ¬A3 by (7) and (P1): A2 ∧ (A0,¬A1) → ¬A3

(9) ¬A0 by (P3): ¬A3 → ¬A0

(10) ¬A0 by (1) and (9)
(11) A1 by (C1), (10) and (P1): ¬A0 ∧ (¬A1, A2) → A1

(12) ¬A2 by (11) and (P1): A1 ∧ (A0,¬A1) → A2

(13) ¬A3 by (10) and (P3): ¬A0 → ¬A3

(14) A2 by (13) and (P1): ¬A3 ∧ (A0,¬A1) → A2

(15) (⊥)2 by (12) and (14)
(16) (⊥)0 by (15) and (P4)

�

3 Examples

We will investigate several circular referential relations.

Example 3.1 (A simple liar sentence)

“This sentence is not true”.

Remark. Now we define A = ”This sentence is true”. Then a simple liar sentence is expressed
by the pair-sentence formula (A,¬A). Suppose (A0,¬A1). Then we get the referential cycle
number of (A0,¬A1) is 2 by Theorem 2.7.
Moreover, because of µ(A0,¬A1) ≥ 2 this sentence is paradoxical by Definition 2.1(3).

�

Example 3.2 (Dialogue for Socrates and Plato 1)

Socrates : “My remarks are not true”.

Plato : “Socrates’s remarks are true”.

Remark. Now we define S = ”Socrates’s remarks are true” and P = ”Plato’s remarks are
true”. Then we get the two pair-sentence formulas (S,¬S) and (P, S). Suppose (S0,¬S1) and
(P 0, S1). Then we get the referential cycle number of (S0,¬S1) is 2 by Theorem 2.7.
Moreover, the referential cycle number of P is also 2 as follows.

(1) (P 0,¬S2) by (E3): (P 0, S1) ∧ (S0,¬S1) → (P 0,¬S2)
(2) (P 0, S3) by (1), (C1) and (E3): (P 0,¬S2) ∧ (¬S1, S2) → (P 0, S3)
(3) (P 2, S3) by (2) and (P2): (P 0, S3) ∧ (P 0, S1) → (P 2, S3)
(4) (P 0, P 2) by (3) and Theorem2.5(2): (P 0, S3) ∧ (P 2, S3) → (P 0, P 2)

So two sentences are both paradoxical by Definition 2.1(3).
�

Example 3.3 (Dialogue for Socrates and Plato 2)

Socrates : “Plato’s remarks are not true”.

Plato : “Socrates’s remarks are true”.

6

- 6 -



Remark. Now we define S = ”Socrates’s remarks are true” and P = ”Plato’s remarks are
true”. Then we get the two pair-sentence formulas (S,¬P ) and (P, S). Suppose (S0,¬P 1) and
(P 0, S1). Then we get the referential cycle number of S and P as follows.
(1) (¬P 1,¬S2) by Hypothesis and (C1): (P 0, S1) → (¬P 1,¬S2)
(2) (S0,¬S2) by (1) and (E3): (S0,¬P 1) ∧ (¬P 1,¬S2) → (S0,¬S2)
So we get the referential cycle number of S is µ(S0,¬S2) = 2(2− 0) = 4 by Theorem 2.7.
Similarly, the referential cycle number of P is 4 as follows.

(3) (P 0,¬P 2) by (E3): (P 0, S1) ∧ (S0,¬P 1) → (P 0,¬P 2)
So two sentences are both paradoxical by Definition 2.1(3).
Next we will consider the sentence S ∧ P means that “Both remarks of Socrates and Plato

are true”. Then we have the following calculation.
(4) ((S ∧ P )0, (¬P ∧ S)1) by (C2)
(5) (¬P 1,¬S2) by (C1)
(6) ((¬P ∧ S)0, (¬P ∧ ¬S)1) by (5) and (C2)
(7) ((S ∧ P )0, (¬P ∧ ¬S)2) by (4), (6) and (E3)
(8) (¬S1, P 2) by (C1)
(9) ((¬P ∧ ¬S)0, (¬S ∧ P )1) by (8) and (C2)
(10) ((S ∧ P )0, (¬S ∧ P )3) by (7), (9) and (E3)
(11) ((¬S ∧ P )0, (P ∧ S)1) by (C2)
(12) ((S ∧ P )0, (P ∧ S)4) by (10), (11) and (E3)
So the referential cycle number of S ∧ P is 4 and in this case it is also paradoxical.

�

Example 3.4 (Dialogue for Socrates and Plato 3)

Socrates : “Plato’s remarks are not true”.

Plato : “Socrates’s remarks are not true”.

Remark. Now we define S = ”Socrates’s remarks are true” and P = ”Plato’s remarks are
true”. Then we get the two pair-sentence formulas (S,¬P ) and (P,¬S). Suppose (S0,¬P 1)
and (P 0,¬S1). Then we get the referential cycle number of S is 2 as follows.
(1) (¬P 1, S2) by Hypothesis and (C1)
(2) (S0, S2) by (1) and (E3): (S0,¬P 1) ∧ (¬P 1, S2) → (S0, S2)
Also the referential cycle number of P is same as S. So two sentences are both paradoxical

by Definition 2.1(3).
But if we consider the sentences of S ∧ ¬P or ¬S ∧ P , then both cases are categorical. For

example,
(3) ((S ∧ ¬P )0, (¬P ∧ S)1) by (1) and (C2)
Hence we get µ(S ∧ ¬P ) = 1 by Theorem 2.7 and categorical.

�

Example 3.5 (Dialogue for Socrates, Plato and Aristoteles 1)

Socrates : “Plato’s remarks are not true”.

Plato : “Aristoteles’s remarks are not true”.

Aristoteles : “Socrates’ remarks are true”.

Remark. Now we define S = ”Socrates’s remarks are true”, P = ”Plato’s remarks are true” and
A = “Aristoteles’s remarks are true”. Then we get the three pair-sentence formulas (S,¬P ),
(P,¬A) and (A,S). Suppose (S0,¬P 1), (P 0,¬A1) and (A0, S1). Then all of the sentences
S ∧ P ∧A, S ∧ P ∧ ¬A, S ∧ ¬P ∧ ¬A, ¬S ∧ P ∧A, ¬S ∧ ¬P ∧A and ¬S ∧ ¬P ∧ ¬A have 3 as
the referential cycle number and paradoxical. For example,
(1) ((S ∧ P ∧A)0, (¬P ∧ ¬A ∧ S)1) by Hypothesis and (C2)
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(2) ((¬P ∧ ¬A ∧ S)0, (A ∧ ¬S ∧ ¬P )1) by Hypothesis, (C1) and (C2)
(3) (((S ∧ P ∧A)0, (A ∧ ¬S ∧ ¬P )2) by (1), (2) and (E3)
(4) ((A ∧ ¬S ∧ ¬P )0, (S ∧ P ∧A)1) by Hypothesis, (C1) and (C2)
(5) ((S ∧ P ∧A)0, (S ∧ P ∧A)3) by (3), (4) and (E3)
On the other hand, each of the sentences S ∧ ¬P ∧A and ¬S ∧ P ∧ ¬A is categorical. For

example,
(6) ((S ∧ ¬P ∧A)0, (¬P ∧A ∧ S)1) by Hypothesis and (C2)

�

Example 3.6 (Dialogue for Socrates, Plato and Aristoteles 2)

Socrates : “Plato’s remarks are not true”.

Plato : “Aristoteles’s remarks are not true”.

Aristoteles : “Socrates’ remarks are not true”.

Remark. Now we define S = ”Socrates’s remarks are true”, P = ”Plato’s remarks are true”
and A = “Aristoteles’s remarks are true”. Then we get the three pair-sentence formulas (S,¬P ),
(P,¬A) and (A,¬S). Suppose (S0,¬P 1), (P 0,¬A1) and (A0,¬S1). Then all of the sentences
S ∧ P ∧ ¬A, S ∧ ¬P ∧A, S ∧ ¬P ∧ ¬A, ¬S ∧ P ∧A, ¬S ∧ P ∧ ¬A and ¬S ∧ ¬P ∧A
have 6 as the referential cycle number and paradoxical. For example,
(1) ((S ∧ P ∧ ¬A)0, (¬P ∧ ¬A ∧ S)1) by Hypothesis and (C2)
(2) ((¬P ∧ ¬A ∧ S)0, (A ∧ S ∧ ¬P )1) by Hypothesis, (C1) and (C2)
(3) (((S ∧ P ∧ ¬A)0, (A ∧ S ∧ ¬P )2) by (1), (2) and (E3)
(4) ((A ∧ S ∧ ¬P )0, (¬S ∧ ¬P ∧A)1) by Hypothesis, (C1) and (C2)
(5) ((S ∧ P ∧ ¬A)0, (¬S ∧ ¬P ∧A)3) by (3), (4) and (E3)
(6) ((¬S ∧ ¬P ∧A)0, (P ∧A ∧ ¬S)1) by Hypothesis, (C1) and (C2)
(7) ((S ∧ P ∧ ¬A)0, (P ∧A ∧ ¬S)4) by (5), (6) and (E3)
(8) ((P ∧A ∧ ¬S)0, (¬A ∧ ¬S ∧ P )1) by Hypothesis, (C1) and (C2)
(9) ((S ∧ P ∧ ¬A)0, (¬A ∧ ¬S ∧ P )5) by (7), (8) and (E3)
(10) ((¬A ∧ ¬S ∧ P )0, (S ∧ P ∧ ¬A)1) by Hypothesis, (C1) and (C2)
(11) ((S ∧ P ∧ ¬A)0, (S ∧ P ∧ ¬A)6) by (9), (10) and (E3)
On the other hand, each of the sentences S ∧ P ∧A and ¬S ∧ ¬P ∧ ¬A has 2 as the referential

cycle number and also paradoxical. For example,
(12) ((S ∧ P ∧A)0, (¬P ∧ ¬A ∧ ¬S)1) by Hypothesis and (C2)
(13) ((¬P ∧ ¬A ∧ ¬S)0, (S ∧ P ∧A)1) by Hypothesis and (C2)
(14) ((S ∧ P ∧A)0, (S ∧ P ∧A)2) by (12), (13) and (E3)

�

Example 3.7 (G, (F ∨ (H ∧ ¬G))) [4]

Remark.
(1) (G0, (F ∨ (H ∧ ¬G))1) Hypothesis
(2) (F 0, F 1) Hypothesis
(3) (H0, H1) Hypothesis
(4) (¬G1,¬(F ∨ (H ∧ ¬G))2) by (1) and (C1)

where ¬(F ∨ (H ∧ ¬G)) = (¬F ∧ (¬H ∨G)).
(5) ((H ∧ ¬G)0, (H ∧ ¬F ∧ (¬H ∨G))1) by (3), (4) and (C2)

where (C2): (H0, H1) ∧ (¬G0,¬(F ∨ (H ∧ ¬G))1) →
((H ∧ ¬G)0, (H ∧ ¬F ∧ (¬H ∨G))1)

(6) ((F ∨ (H ∧ ¬G))0, (F ∨ (H ∧G))1) by (2), (5) and (C3)
(7) (G0, (F ∨ (H ∧G))2) by (1), (6) and (E3)
(8) ((F ∨ (H ∧G))0, (F ∨ (H ∧ ¬G))1) by similar to (4) – (6)
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(9) (G0, (F ∨ (H ∧ ¬G))3) by (7), (8) and (E3)
Hence we get µ(G0, (F ∨ (H ∧ ¬G))1) = 2 and paradoxical.
Moreover F → G is provable as follows.

(10) [F 0] by Hypothesis
(11) F 1 by (2), (10) and (P1): F 0 ∧ (F 0, F 1) → F 1

(12) (F ∨ (H ∧ ¬G))1 by (11) and (∨-introduction) in a stage 1
(13) G0 by (12) and

(P1): (F ∨ (H ∧ ¬G))1 ∧ (G0, (F ∨ (H ∧ ¬G))1) → G0

(14) F 0 → G0 by (10), (13) and (→-introduction) in a stage 0
(15) (F → G)0

�

Example 3.8 (G, (F ∧H) ∨ (F ∧ ¬H ∧G) ∨ (¬F ∧H¬G)) [4]

Remark.
(1) (G0, ((F ∧H) ∨ (F ∧ ¬H ∧G) ∨ (¬F ∧H ∧ ¬G))1) Hypothesis
(2) (F 0, F 1) Hypothesis
(3) (H0, H1) Hypothesis
(4) Suppose (F ∧ ¬H,�)1, then we get (F ∧H,⊥)1, (F ∧ ¬H ∧G,G)1 and (¬F ∧H ∧ ¬G,⊥)1.
So, (G0, G1) and categorical.
(5) Suppose (¬F ∧H,�)1, then we get (F ∧H,⊥)1, (F ∧ ¬H ∧G,⊥)1 and (¬F ∧H ∧ ¬G,¬G)1.
So, (G0,¬G1) and paradoxical.
(6) Suppose (F ∧H,�)1, then we get (F ∧H,�)1, (F ∧ ¬H ∧G,⊥)1 and (¬F ∧H ∧ ¬G,⊥)1.
So, (G0,�1) and categorical with truth.
(7) Suppose (¬F ∧ ¬H,�)1, then we get (F ∧H,⊥)1, (F ∧ ¬H ∧G,⊥)1 and (¬F ∧H ∧ ¬G,⊥)1.
So, (G0,⊥1) and categorical with false.

�

4 Conclusion

We proposed a pair sentential calculus PSC by extending SCI to deal with (Ai, Bj), which
means “A at a stage i is referential to B at stage j” where i and j are referential stage numbers
that A and B hold respectively. Here PSC is a conservative extension of SCI and can deal
with the paradoxical sentences. While PSC is inconsistent as the ordinary logic, it is consistent
as the pathological logic, so it is one of paraconsistent logic.
- further works

• some elementary extensions of PSC

• relations with other paraconsistent logics

• adequate algebraic semantics
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[8] L. H. Kauffman, De Morgan algebras — completeness and recursion, Proceedings of the
Eighth International Symposium on Multiple-Valued Logic,(1978), pp.82–86.

[9] L. H. Kauffman, Complex number and algebraic logic, Proceedings of the 10th International
Symposium on Multiple-Valued Logic,(1980), pp.82–86.

[10] S. Kripke, Outline of a theory of truth Journal of Philosophy 72, 1975, pp.690–716.

[11] G. Priest, Paraconsistent logic, In D. M. Gabbay and F. Guenthncr (eds), Handbook of
philosophical logic, Kluwer academic, 2002.

[12] R. Suszko, Identity connective and modality, Studia Logica,vol.27(1971), pp.9–39.

[13] R. Suszko, The Fregean axiom and Polish mathematical logic in the 1920s, Studia Logica,
vol.36(1977), pp.377–380.
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