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Abstract 
A class of feature spaces that can violate the triangle inequality is proposed. The theory states that arbitrary N 

samples, in which all the distances between any pair of samples are given but their coordinates are unknown, 
can always assign the coordinates in the defined feature space after eigenvalue decomposition. 
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1. Introduction 
The feature space is one of the basic concepts in information science including pattern recognition [1], 

multivariate analysis [2], optimization problems [3], and artificial neural networks [4]. Pattern recognition 

classifies input vectors in a feature space and a metric is critical that defines a norm between two vectors in the 
feature space. Multivariate analysis handles multidimensional vectors, which are supposed to be coordinates in a 

feature space. Optimization problems frequently require minimizing or maximizing vectors in a feature space. 

Artificial neural networks, one of the most successful mathematical models in information science, encode 
information of features in input and output vectors based on machine learning. An important characteristic of the 

feature space is quantitative calculation of an abstract human concept by using a real value metric. Another 

character is the utilization of linear algebra, which has many well-known mathematical techniques. It makes the 
feature space a popular tool in the science and engineering fields. 

The concept of metric in vector spaces may be formally generalized in several manners. A 

pseudometric space is a space in which the distance between a pair of different vectors can be zero but the 
triangle inequality holds. Oppositely, a semimetric space is a space in which the distance between a pair of 

vectors is zero if and only if the vectors are identical but the triangle inequality can be violated among three 

elements. Similar metrics are utilized for formalizing various abstract concepts in mathematics such as topology 
or geometry. 

The triangle inequality always holds on a usual feature space that has a metric because a metric 

acquires a defined distance. A normal metric feature space thus cannot process data violating the triangle 
inequality among three of vectors inside a feature space. This violation is sometimes appeared if a distance 

matrix among all the pairs of vectors in a feature space is given in which explicit coordinates of the vectors are 

unknown. Such situations occur in many cases in real problems, e.g., when one would like to classify 
relationships among many samples in a multi-dimensional feature space in which a sample is supposed to be 

characterized by multi-dimensional variables and only representative distances between any pair of samples are 
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experimentally determined. If those data have violations of the triangle inequality, one would meet difficulty to 

resolve allocations of the data within a Euclidean space. One might thus conclude that the semimetric space is 

adequate because semimetric may violate triangle inequality. Although there are some applications of 

semimetric in engineering fields, mathematical theories should be expected to extend. 

Here we describe the theory for a class of N-dimensional complex feature spaces and show the 

violation of triangle inequality can be logically existed without any conflict in that spaces. This theory is simple 

and expected to be applicable to methods such as pattern recognition or neural networks. 

 

2. Definition of the proposed three feature spaces 

A series of metric spaces in this study is defined by using N-dimensional complex vector spaces, C
N
, that have 

new inner products, norms, and distances introduced this section. 

DEFINITION 1 The three inner products are defined as, 
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where 
N

N Cvvvv  ),,,( 21  , 
N

N Cwwww  ),,,( 21  , 
NC  is a N-dimensional complex vector 

space, vt
 is a transposed vector of v , and w  is a complex conjugate of w . 

Each inner product satisfies the following conditions, which are common to other ordinary inner 

products. 

 

PROPOSITION 1 The inner product wv,  satisfies 

(4) vwwv ,,  , 

(5) wvwuwvu ,,,   , 

(6) Rvv , , 

where 
NCwvu ,, , and R, . 

 

PROOF. 
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PROPOSITION 2 The inner product  wv,  satisfies 
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(8)      wvwuwvu ,,,   , 

(9)   Rvv , , 

where 
NCwvu ,, , and R, . 

 

PROOF. 
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PROPOSITION 3 The inner product  wv,  satisfies 

- 71 -



(10)    vwwv ,,  , 

(11)      wvwuwvu ,,,   , 

(12)   Cvv , , 

where 
NCwvu ,, , and C, . 

 

PROOF. 
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The inner product  wv,  is the sum of products of two complex numbers. It is an extremely simple 

number and but it extends to a complex domain. Further,   



N

k

kk

t wvvwwv
1

,  is regarded as a 

complement to the ordinary inner product   



N

k

kk

t wvwvwv
1

,  in a complex vector space. 

Following the definitions of these inner products, we define the norms and distances in these new 

spaces using these inner products. In general, the definitions of ordinary norms and distances are limited by 

several well-known conditions. We, however, call a norm, distance, or metric hereafter in a more extended way, 

because the concept of an ordinary norm or distance corrupt when one think a vector space that can violate the 

triangle inequality. 

 

DEFINITION 2  

(13) The norm v  of a vector 
NCv  with vv,  is vv, . 

(14) The norm v  of a vector 
NCv  with  vv,  is  vv, . 

(15) The norm v  of a vector 
NCv  with  vv,  is  vv, . 
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DEFINITION 3 

(16) The distance wvd ,  is wvwvwv  , , where 
NCwv , . 

(17) The distance  wvd ,  is  wvwvwv  , , where 
NCwv , . 

(18) The distance  wvd ,  is  wvwvwv  , , where 
NCwv , . 

Each distance is symmetric for v and w. 

 

PROPOSITION 4 The distances wvd , ,  wvd , , and  wvd ,  satisfy 

(13) vwdwvd ,,   

(14)     vwdwvd ,,   

(15)     vwdwvd ,,   

 

PROOF.  

(13)     ),(,,,, vwdvwvwvwvwwvwvwvd  . 

(14)              vwdvwvwvwvwwvwvwvd ,,,,,  . 

(15)              vwdvwvwvwvwwvwvwvd ,,,,,  . 

Each distance is pseudo-metric in which multiple pairs of two vectors having the distance of zero can 

exist. 

 

PROPOSITION 5 The distances wvd , ,  wvd , , and  wvd ,  satisfy 

(16)  v and w that satisfy wv   and 0, wvd  exist. 

(17) v and w that satisfy wv   and   0, wvd  exist. 

(18) v and w that satisfy wv   and   0, wvd  exist. 

 

PROOF. 
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(16) Let ),,( 11 NN ibaibav    and ),,( 11 NN idcidcw   that satisfy wv   and 
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(18) Let ),,( 11 NN ibaibav    and ),,( 11 NN idcidcw   that satisfy wv   and 
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Moreover, each distance can be not only a real number, but also an imaginary number for wvd ,  and 

 wvd , , a complex number for  wvd , . 
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PROPOSITION 6 The distances wvd , ,  wvd , , and  wvd ,  satisfy 

(19) If 0,  wvwv , then   0,Re wvd  and   0,Im wvd . If 0,  wvwv , then 

  0,Re wvd  and   0,Im wvd . 

(20) If   0,  wvwv , then    0,Re wvd  and    0,Im wvd . If   0,  wvwv , 

then    0,Re wvd  and    0,Im wvd . 

(21)   Cwvd , . 

 

PROOF. 

(19)  From (6) and wvwvwvd  ,, , if 0,  wvwv , then   0,Re wvd  and 

  0,Im wvd .  If 0,  wvwv , then   0,Re wvd  and   0,Im wvd . 

(20)  From (9) and    wvwvwvd  ,, , if   0,  wvwv , then    0,Re wvd  and 

   0,Im wvd .  If   0,  wvwv , then    0,Re wvd  and    0,Im wvd . 

(21)  From (12),     Cwvwvwvd  ,, . 

Normally, distances should be zero or positive real numbers. These distances, however, are extended to negative 

real and imaginary domains. 

Here, we show several propositions related these metric spaces. 

 

PROPOSITION 7 If 
NRwv , , the metric space with wv,  or  wv,  is equal to an 

N-dimensional Euclidean space. 

 

PROOF. 

If 
NRwv , , vw

vwvwwvvw
wv t

tttt








22

,  and   vwwv t, .  Each of the metric spaces is 

equivalent to a Euclidean space, which has a metric   vwwv t, . 
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PROPOSITION 8 If 
NRwv , , the metric space with  wv,  is identically the space that has a 

metric of 0. 

 

PROOF. 

If 
NRwv , ,   0

22
, 
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i

wvvw
wv

tttt

. 

 

3. Isometric transformations 

In metric spaces, the existence of their isometric transformations is critical. An orthogonal matrix T , a matrix 

that satisfies ETTTT tt  , is only the isometric transformation for wv, ,  wv, , and  wv,  (as 

proved below). This is also true in Euclidean spaces, while unitary transformations are needed in complex vector 

spaces. Thus, the class of metrics in this study is regarded as a simple extension of the Euclidean metric from the 

point of view of isometric transformations, rather than the complex vector metric in which the unitary 

transformation is needed. 

 

PROPOSITION 9  For arbitrary v and w, 

(22)  wvTwTvETTt ,,   

(23)     wvTwTvETTt ,,   

(24)     wvTwTvETTt ,,   

 

PROOF. 

(22)  wvTwTvETTt ,,   for arbitrary v and w: 

Let T  to be an orthogonal transformation, then 
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For arbitrary v and w, ETTwvTwTv t  ,, : 

Suppose ETTt   and wvTwTv ,,   for arbitrary v and w.  From 
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(25)  0
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where jkc  ( jkc ) is an element of C  ( C ), and constant by choosing a T . But (25) states that the sum of 

two quadratic forms of vectors vwv ,,  and w  is identically 0, meaning that v and w are not arbitrary, and 

contradicts the premise that states v and w are arbitrary. Therefore ETTwvTwTv t  ,,  is false, 

which leads ETTwvTwTv t  ,,  is true. 

(23)     wvTwTvETTt ,,   for arbitrary v and w: 

Let T  to be an orthogonal transformation, then 
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where jkc  ( jkc ) is an element of C  ( C ), and constant by choosing a T . But (26) states that the sum of 

two quadratic forms of vectors vwv ,,  and w  is identically 0, meaning that v and w are not arbitrary, and 

contradicts the premise that states v and w are arbitrary. Therefore     ETTwvTwTv t  ,,  is false, 

which leads     ETTwvTwTv t  ,,  is true. 

(24)     wvTwTvETTt ,,   for arbitrary v and w: 

Let T  to be an orthogonal transformation, then      wvvwTTwvTwTvTwTv tttt
,,  . 

For arbitrary v and w,     ETTwvTwTv t  ,, : 

Suppose ETTt   and    wvTwTv ,,   for arbitrary v and w.  From 

            

   vCwwETETv

wETvETEwEvTwTvwvTwTv

ttt 

 ,,,,,
 





N

kj

kjjk wvc
1,

, where   ETET
t

  is replaced by C , and then    wvTwTv ,,   becomes 

(27)  0
1,




N

kj

kjjk wvc , 

where jkc  is an element of C , and constant by choosing a T . But (27) states that the quadratic form of 

vectors v  and w  is identically 0, meaning that v and w are not arbitrary, and contradicts the premise that 

states v and w are arbitrary. Therefore     ETTwvTwTv t  ,,  is false, which leads 

    ETTwvTwTv t  ,,  is true. 

 

4. Violation of the triangle inequality 

We finally conclude that the class of our metric spaces accepts both of the not-violated and violated triangle 

inequality. This property makes these metrics afford real applications. We start with the following lemma. 

 

LEMMA 1. 

(28)  ccbbaaba ,,,
2

1
,  , 
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(29)         ccbbaaba ,,,
2

1
,  , 

(30)         ccbbaaba ,,,
2

1
,  , 

where abc   and 
NCcba ,, . 

 

PROOF. 

(28) aababbaaabbabbababcc ,,2,,,,,,,   

Thus  ccbbaaba ,,,
2

1
,  . 

(29)                  aababbaaabbabbababcc ,,2,,,,,,,   

Thus.         ccbbaaba ,,,
2

1
,   

(30)                  aababbaaabbabbababcc ,,2,,,,,,,   

Thus         ccbbaaba ,,,
2

1
,  . 

Using this lemma, we proof propositions in the following. The proofs are similar to those of a multi-dimensional 

scaling algorithm, which is often used in several scientific fields. 

 

PROPOSITION 10. 

A set of different N points  Niai ,,1:  , where the distance  ji aad ,  between different two points 

ji aa ,  are arbitrarily specified as complex numbers, can be generally positioned in a  1N -dimensional 

complex vector space 
1NC  with the metric  ji aa , . 

 

PROOF. 

Suppose  0,,01 a  (we can arbitrarily set the relative location of the only one point of all) and Z  is a 

 1N -dimensional matrix that has an element    Njiaaz jiij ,,2,:,   thus symmetric. From (30), 

the elements of Z  can be transformed as 

 jiij aaz ,       
ijijjjii aaaaaaaa  ,,,

2

1  22

1

2

1
2

1
ijji ddd  , where  jiij aadd , . 

In general, any matrix can be decomposed into an eigenvalue diagonal matrix and eigenvector matrices. After 
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the decomposition of Z , we obtain YYLZ t , where L  is a diagonal matrix that has eigenvalues, Y  is 

an eigenvector matrix, and Yt  is its transposed matrix. Taking 2

1

LL  , we can get two matrix 2

1

YLXt   

and 

(31)  YLX t2

1

  

from XXYLYLYYLZ ttt  2

1

2

1

. This  1N  dimensional matrix X  consists of the  1N  

column vectors, which represents the coordinates of the  1N  points  NiCa N

i ,2:1  
 with the 

origin   1

1 0,,0  NCa  . 

 

PROPOSITION 11. 

A set of different N points  Niai ,,1:  , where the distance ji aad ,  between different two points 

ji aa ,  are arbitrarily specified as real numbers in which the triangle inequality can either hold or not hold, can 

be generally positioned in a  1N -dimensional complex vector space 
1NC  with the metric ji aa , . 

 

PROOF. 

Similar with the proof of PROPOSITION 10, suppose  0,,01 a  and Z  is a  1N -dimensional 

matrix that has an element    Njiaaz jiij ,,2,:,   thus symmetric. From (3), 
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.   

Therefore, if all the elements  jiij aaz ,  are specified as real numbers, the resulted coordinate matrix X , 

which is the same as (31), is of the metric ji aa , .  Apparently, if one can specify arbitrary real numbers as 

the elements  22

1

2

1
2

1
ijjiij dddz  , points can either satisfy the triangle inequality or not. 

 

PROPOSITION 12. 

A set of different N points  Niai ,,1:  , where the distance  
ji aad ,  between different two points 
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ji aa ,  are arbitrarily specified as real numbers in which the triangle inequality can either hold or not hold, can 

be generally positioned in a  1N -dimensional complex vector space 
1NC  with the metric  

ji aa , . 

 

PROOF. 

Similar with the proof of PROPOSITION 10, suppose  0,,01 a  and Z  is a  1N -dimensional 

matrix that has an element    Nkjaaz kjjk ,,2,:,   thus symmetric. From (3), 
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.   

Therefore, if all the elements  kjjk aaz ,  are specified as imaginary numbers (  kjjk aaiz , ), the 

resulted coordinate matrix X , which is the same as (31), is of the metric  
ji aa , . Apparently, if one can 

specify arbitrary numbers reali  as the elements  22

1

2

1
2

1
jkkjjk dddz  , points can either satisfy the 

triangle inequality or not, in the sense of  








 22

1

2

1
2

1
Im jkkjjk dddz . 

 

5. Conclusion 

We proposed a class of multi-dimensional feature spaces that can violate the triangle inequality by defining a 

class of metrics, norms, and distances. The class of our metric is pseudo-semimetric and it simultaneously 

affords vectors of both the mixed not-violated and violated triangle inequality. The violation or not are 

mathematically symmetric caused of the symmetry in real and imaginary numbers. Our space is exactly identical 

to Euclidean space if the imaginary parts of all the vectors are zero. We have demonstrated only orthogonal 

matrices are the class of isometric transformations in our metric spaces. We have further proved the propositions 

that vectors of which the distances between any pair are given can be always allocated to explicit positions with 

the corresponding coordinates in a multi-dimensional complex vector space by eigenvalue decomposition 

without any logical conflict. By only replacing real vectors to complex vectors, this theory is easily adopted to 

known algorithms in information science such as pattern recognition and neural networks. 
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