
A syntactical comparison between pair sentential calculus

PSC and Gupta’s definitional calculus Cn

Tadao Ishii∗

Abstract

In this paper we will compare two logical systems PSC and Cn with a syntactical
point of view. Because both notions of the pair-sentence with stage number in PSC and
Gupta’s sentence-definition with revision stage number in Cn are very similar, and both
can deal with paradoxical sentences like a simple Liar sentence. His system was defined
as a predicate calculus, but here we will introduce the propositional version of Cn for the
comparison, and we had the following results: (1) C0 is a sublogic of PSC, or PSC is an
extension of C0 under the two translations tC and tP. Similarly, PSCn is an extension of
Cn. (2) If we extend the systems C0 and Cn by adding three properties: exchangeability,
transitivity and relativity of revision indices, then two logics C0 and PSC (also Cn and
PSCn) are syntactically equivalent. (3) We can calculate a cycle number of each pair
sentence in PSC, but not in C0. (4) PSC can deal with multiple pair sentences, but
difficult to deal with such multiple definitions in Cn.

Keywords: SCI, pair-sentence, Liar paradox, Tarski’s biconditional, revision theory.

1 Introduction

In the 1970’s, R. Suszko attempted to formalize an ontology of facts in L. Wittgenstein’s
Tractatus on the basis of Fregean scheme, and called it non-Fregean logic [5, 6]. The sentential
calculus with identity, SCI in short, is the most simplified version of his non-Fregean logic and
obtained by adding the sentential identity connective ≡ to the classical logic. Statements of
the form A ≡ B read as “A is identical with B” which means that the referent of two sentences
are identical in the basis of Fregean scheme. SCI has the following identity axioms:
(E1) A ≡ A
(E2) (A ≡ B) → (B ≡ A)
(E3) (A ≡ B) ∧ (B ≡ C) → (A ≡ C)
(C1) (A ≡ B) → (¬A ≡ ¬B)
(C2) (A ≡ B) ∧ (C ≡ D) → (A ∧ C) ≡ (B ∧D)
(C3) (A ≡ B) ∧ (C ≡ D) → (A ∨ C) ≡ (B ∨D)
(C4) (A ≡ B) ∧ (C ≡ D) → (A → C) ≡ (B → D)
(C5) (A ≡ B) ∧ (C ≡ D) → (A ≡ C) ≡ (B ≡ D)
(SI) (A ≡ B) → (A → B)

Here (E1)–(E3) and (C1)–(C5) show that the identity connective ≡ is an equivalence and
congruence relation, respectively. From (SI) we get A ↔ B ̸⇒ A ≡ B in general, which means
SCI is non-Fregean logic because we can consider more than two situations (true and false) in
SCI. Every equation in the logical theorems of SCI is only a trivial (i.e., A ≡ A). So, SCI
is a very weak logical system. But many logical systems can be simulated on Suszko’s theories
of situation. For example, we define α ≡ β ⇐⇒ 2(α ↔ β) in modal logic, then we have the

∗Department of Information Systems, School of Information and Culture,
Niigata University of Information and International Studies, and visiting (2015.9 – 2016.8):
Department of Cognitive Science, Institute of Psychology, University of Lódź, Poland

- 1 -

correspondences WT – S4 and WH – S5, where WT and WH are some elementary extensions
of SCI. Also we define α ≡ β ⇐⇒ (α ⇔ β) in 3-valued Lukasiewicz logic where ⇔ is a L3

equivalence, then we have the correspondence SCI – L3.
Here we consider to deal with a simple Liar sentence : “This sentence is not true” in SCI.

Let’s define A=”This sentence is true”, then A ≡ ¬A because the referent of two sentences A
and ¬A are identical, but it’s impossible logically by (SI). So, we can not deal with a Liar
sentence in the normal SCI. In order to overcome the matter, we introduced a referential
relation of pair-sentence similar to identity ≡, i.e., (A0,¬A1) : a situation of A at a stage 0
is referential to the situation of ¬A at a stage 1 [2, 3]. And we proposed a pair sentential
calculus, PSC in short, which was obtained from the classical sentential calculus by adding a
new pair-sentence constructor (()i , ()j), where i, j are some stage numbers.

As another approach to overcome the matter, A. Gupta and his colleagues studied the truth
concept and paradox in the 1980’s, and published a book, the title of which is “The Revision
Theory of Truth” as the results so far obtained. In the book, Gupta proposed the theory of
definitions which is the proper framework for the construction of a theory of truth [1]. At first
as an analytical tool for the truth concept, Gupta based on Tarski’s biconditionals for L in
L′ such that X is true in L ⇐⇒ p in L′, where X is replaced by the standard name of a
sentence of L and p is replaced by the translation in L′ of the sentence. The language L for
which the definition is constructed is called the object language, and the language L′ in which
the definition is given is called the metalanguage. For example, let’s consider a simple Liar
sentence:
(This sentence) “This sentence is not true”.
Then at first we have the following identity.
(1) This sentence = “This sentence is not true”,
and by the Tarski’s biconditionals for this sentence, we get
(2) “This sentence is not true” is true ⇐⇒ This sentence is not true.
By substitutivity of (1) to (2), we get
(3) This sentence is true ⇐⇒ This sentence is not true,
which immediately yields a contradiction. So, the Liar paradox appears to show that the
fundamental intuition is incoherent. In general, a central problem in the theory of truth is to
resolve the paradox without damaging the fundamental intuition in any essential way.

Gupta viewed Tarski’s biconditionals such that “A” is true ⇐⇒ A as procedures for deter-
mining whether a sentence A is true or not, and divided into two derivations:

A
”A” is true

(T − Intro) ”A” is true
A

(T − Elim)

where T-Intro and T-Elim mean T-Introduction and T-Elimination, respectively.
Similarly, the definition of a sentence A such that A =df DA, which may include a self-

referential form, can be viewed as procedures for determining whether a sentence is A, and
divided into two derivations:

DA

A
(Df − Intro) A

DA
(Df − Elim)

Moreover, the sequence generated by each derivation was called a revision sequence for a
sentence A and a revision stage number i was introduced to show the process of revision. The
modified versions of (Df-Intro) and (Df-Elim) are as follows: for any integer number i,

DA
i

Ai+1
(Df − Intro)

Ai

DA
i−1

(Df − Elim)

where A is the definiendum and DA is the definienda of A. Gupta proposed the definitional
calculus based on the natural deduction system and called Cn. The definitional calculus Cn

consists of classical inference rules, two definition rules (Df-Intro) and (Df-Elim), and moreover
the following two kinds of index shift rules: for any integer number i, j,

Ai

Aj
(IS) Ai

Ai±n
(ISn) (∃n ∈ N)

where an occurrence of Ai in a derivation indicates the relative position of the step in a revision

- 2 -

process. A must not contain any defined symbols in (IS), but may contain these in (ISn).
In this paper we will compare two logical systems PSC and Cn with a syntactical point

of view. Because both notions of the pair-sentence with stage number in PSC and Gupta’s
sentence-definition with revision stage number in Cn are very similar, and both can deal with
paradoxical sentences like a simple Liar sentence.

2 PSC Logic

Let LP =< FORP ,¬,∧,∨,→, (()i , ()j),⊤,⊥ > be a language of the sentential calculus with
pair-sentence constructor to construct a pair sentence formula (Ai, Bj) which means “A at a
stage i is referential to B at stage j”, where i and j are referential stage numbers that A and
B hold, respectively. Then the formulas FORP of a language LP are generated in the usual
way from an infinite set V ARP of sentential variables and constants ⊤ (true), ⊥ (false) by the
standard truth functional connectives ¬(negation), ∧ (conjunction), ∨ (disjunction) and →
(material implication) as well as the pair-sentence constructor (()i , ()j), where i, j are some
stage numbers. So, we have:
(1) V ARP =

∪
i∈N V ARi, where V ARi = {pi, qi, ri, . . .}

(2) V ARP ⊆ FORP

(3) ∀Ai, Bi, Cj ∈ FORP =⇒ ¬Ai, Ai ∧Bi, Ai ∨Bi, Ai → Bi, (Ai, Cj) ∈ FORP

Also we may use the same parentheses as auxiliary symbols even assume that the priority of
each connective and constructor are weak as ¬, ∧, ∨, →, (()i , ()j) in order. Throughout this
paper the letters p, q, r, p0, p1. . . are used to denote any variables; the letters A, B, C, . . .
denote formulas of a PSC language LP ; the letters X, Y denote sets of formulas.

We will introduce several terminologies with the pair-sentence as follows:
(1) If A is a subformula of B, then we say that the pair-sentence (Ai, Bj) is a circular referential
relation. Otherwise, is a non-circular referential relation.
(2) For a circular referential relation (Ai, Bj) such that the referential recursive pattern Ai Bj

0

Bj+1
1 Bj+2

2 · · ·Bj+(n−1)
0 · · · holds, the total referential stage number n of Bj

0 being recursively

returned to itself B
j+(n−1)
0 is called a referential cycle number of B relative to a circular referen-

tial relation (Ai, Bj), and τ(B) = n in symbol. Otherwise, for a non-circular referential relation
(Ai, Bj), the referential stage numbers i, j are ineffective, so we will eliminate each referential
stage number like (A,B), and τ(B) = 0.
(3) For any circular referential relation (Ai, Bj), if τ(B) = 1 then we say that B is categorical.
Otherwise, if τ(B) ≥ 2 then we say that B is paradoxical.

We define the referential stage numbering of composed formulas as the following: ∀i, j ∈ N,
(1) (¬A)i ⇐⇒ ¬Ai

(2) (A ∧B)i ⇐⇒ Ai ∧Bi

(3) (A ∨B)i ⇐⇒ Ai ∨Bi

(4) (A → B)i ⇐⇒ Ai → Bi

(5) (A,B)i ⇐⇒ (Ai, Bi)
(6) (Ai)j ⇐⇒ Aj

The axiomatic system PSC for the language LP is defined by the following way: ∀i, j, k ∈ N,
(A1) Ai → (Bi → Ai)
(A2) (Ai → (Bi → Ci)) → ((Ai → Bi) → (Ai → Ci))
(A3) Ai ∧Bi → Ai

(A4) Ai ∧Bi → Bi

(A5) Ai → (Bi → (Ai ∧Bi))
(A6) Ai → Ai ∨Bi

(A7) Bi → Ai ∨Bi

(A8) (Ai → Ci) → ((Bi → Ci) → (Ai ∨Bi → Ci))
(A9) ¬Ai → (Ai → Bi)
(A10) Ai ∨ ¬Ai

- 3 -

(E1) (Ai, Aj) where i = j if A is related to others as a circular referential relation.
(E2) (Ai, Bj) → (Bj , Ai)
(E3) (Ai, Bj) ∧ (Bj , Ck) → (Ai, Ck))
(C1) (Ai, Bj) → ((¬A)i, (¬B)j)
(C2) (Ai, Bj) ∧ (Ci, Dj) → ((A ∧ C)i, (B ∧D)j)
(C3) (Ai, Bj) ∧ (Ci, Dj) → ((A ∨ C)i, (B ∨D)j)
(C4) (Ai, Bj) ∧ (Ci, Dj) → ((A → C)i, (B → D)j)
(C5) (Ai, Bj) ∧ (Ci, Dj) → ((A,C)i, (B,D)j)
(P1) (Ai, Bj) → (Ai → Bj)
(P2) (Ai, Bj) ∧ (B ↔ C)j → (Ai, Cj)
(P3) (Ai, Bj) ∧ (A ↔ C)i → (Ci, Bj)
(P4) (Ai, Bj) → (Ai±n, Bj±n) where ∃n ≥ 0

(Mp) Ai Ai → Bj

Bj

Here the axioms of (A1)–(A10) with modus ponens(Mp) as a single rule (and of course not
exist any pair sentence, so we can eliminate any upper index) will give an axiomatic system
CL for the classical sentential logic, and if we will restrict the pair-sentence formula (Ai, Bj) to
a non-circular referential relation, i.e, (A,B), then PSC is collapsed into an extension WB of
SCI system because if we regard (A,B) as A ≡ B, then any axioms of SCI can be drived from
PSC and also we must demand to have two additional axioms (A ≡ B) ∧ (B ↔ C) → (A ≡ C)
and (A ≡ B) ∧ (A ↔ C) → (C ≡ B) in SCI. Also we call a system which is obtained from
PSC by adding an axiom (P5) (Ai, Ai±n) where ∃n ≥ 0, PSCn.

Definition 2.1 (Derivability) Let X be a set of formulas in a language LP , A a formula and
PSC a system in LP . Then we say that:
(1) (Ai

1, A
j
2) is derivable from X in PSC, we write X⊢PSC(Ai

1, A
j
2) iff there is a sequence of

formulas B1, B2, . . . , Bn(n ≥ 0) such that every formula in the sequence B1, B2, . . . , Bn, (A
i
1, A

j
2)

is either a theorem of PSC, or belongs to X, or is obtained by (Mp) rule from formulas occurring
before it in the sequence, where if X = ∅, we write ⊢PSC(Ai

1, A
j
2), and we say that (Ai

1, A
j
2) is a

theorem of PSC.
(2) A is derivable from X in PSC, we write X⊢PSCA iff there is a sequence of formulas
B1, B2 . . . , Bn such that B0

1 , B
0
2 . . . , B

0
n⊢PSCA

0. If X = ∅, we write ⊢PSCA, and we say that A
is a theorem of PSC.

For example, let’s consider a simple Liar sentence: “ This sentence is not true”. If we define A
= “This sentence is true”. Then a simple Liar sentence is expressed by a pair sentence formula
(A0,¬A1), and we can prove that (A0,¬A1)⊢PSC(A0, A2) as follows:
1 [(A0,¬A1)] [Hypothesis]
2 (A0,¬A1) → (¬A0,¬¬A1) [(C1)]
3 (¬A0,¬¬A1) [1, 2 and (Mp)]
4 (¬¬A ↔ A)1 [Tautology of CL]
5 (¬A0,¬¬A1) ∧ (¬¬A ↔ A)1 → (¬A0, A1) [(P2)]
6 (¬A0, A1) [3, 4, 5 and (Mp)]
7 (¬A0, A1) → (¬A1, A2) [(P4)]
8 (¬A1, A2) [6, 7 and (Mp)]
9 (A0,¬A1) ∧ (¬A1, A2) → (A0, A2) [(E3)]
10 (A1, A2) [1, 8, 9 and (Mp)]

So, we know that τ(A) = 2 relative to a circular referential relation (A0,¬A1) and A is
paradoxical. Also we can prove that (A0,¬A1)⊢PSC3⊥ as follows:
1 [(A0,¬A1)] [Hypothesis]
2 [A0] [Hyothesis]
3 ¬A1 [(P1):A0 ∧ (A0,¬A1) → ¬A1]
4 [¬A2] [Hypothesis]
5 A1 [4 and (P1):¬A2 ∧ (A0,¬A1) → A1]

- 4 -

6 (⊥)1 [3 and 5]
7 (⊥)2 [(E1):(⊥1,⊥2) and (P1)]
8 A2 [4 and 7]
9 ¬A3 [8, (P4) and (P1):A2 ∧ (A0,¬A1) → ¬A3]
10 ¬A0 [(P5):¬A3 → ¬A0]
11 ¬A0 [2 and 10]
12 A1 [11, (C1) and (P1):¬A0 ∧ (¬A1, A2) → A1]
13 ¬A2 [12 and (P1):A1 ∧ (A0,¬A1) → A2]
14 ¬A3 [11 and (P5):¬A0 → ¬A3]
15 A2 [14, (P4) and (P1):¬A3 ∧ (A0,¬A1) → A2]
16 (⊥)2 [13 and 15]
17 (⊥)0 [15, (E1):(⊥2,⊥0) and (P1)]

Similarly, we have the following results:
(1) {(S0,¬S1), (P 0, S1)}⊢PSC(S0, S2) and (P 0, P 2). So, both of S and P are paradoxical and
τ(S) = τ(P) = 2.
(2) {(S0,¬P 1), (P 0, S1)}⊢PSC(S0, S4), (P 0, P 4) and ((S ∧ P)0, (S ∧ P)4). So, all of S, P and
S ∧ P are paradoxical and τ(S) = τ(P) = 4.
(3) {(S0,¬P 1), (P 0,¬S1)}⊢PSC(S0, S2), (P 0, P 2) and ((S ∧ ¬P)0, (S ∧ ¬P)1). So, both of S
and P are paradoxical and S ∧ ¬P is categorical.
(4) {(S0,¬P 1), (P 0,¬A1), (A0, S1)}⊢PSC((S ∧ P ∧A)0, (S ∧ P ∧A)3),
((S ∧ P ∧ ¬A)0, (S ∧ P ∧ ¬A)3), ((S ∧ ¬P ∧ ¬A)0, (S ∧ ¬P ∧ ¬A)3),
((¬S ∧ P ∧A)0, (¬S ∧ P ∧A)3), ((¬S ∧ ¬P ∧A)0, (¬S ∧ ¬P ∧A)3),
((¬S ∧ ¬P ∧ ¬A)0, (¬S ∧ ¬P ∧ ¬A)3), ((S ∧ ¬P ∧A)0, (S ∧ ¬P ∧A)1) and
((¬S ∧ P ∧ ¬A)0, (¬S ∧ P ∧ ¬A)1).
(5) {(S0,¬P 1), (P 0,¬A1), (A0,¬S1)}⊢PSC((S ∧ P ∧ ¬A)0, (S ∧ P ∧ ¬A)6),
((S ∧ ¬P ∧A)0, (S ∧ ¬P ∧A)6), ((S ∧ ¬P ∧ ¬A)0, (S ∧ ¬P ∧ ¬A)6),
((¬S ∧ P ∧A)0, (¬S ∧ P ∧A)6), ((¬S ∧ P ∧ ¬A)0, (¬S ∧ P ∧ ¬A)6),
((¬S ∧ ¬P ∧A)0, (¬S ∧ ¬P ∧A)6), ((¬S ∧ ¬P ∧A)0, (¬S ∧ ¬P ∧A)2) and
((¬S ∧ ¬P ∧ ¬A)0, (¬S ∧ ¬P ∧ ¬A)2).

Next, we consider a set of circular referential relations: {(A0, (B ∨ (C ∧ ¬A))1), (B0, B1),
(C0, C1)}. Then we can prove that
(1) {(A0, (B ∨ (C ∧ ¬A))1), (B0, B1), (C0, C1)}⊢PSC((B ∨ (C ∧ ¬A))0, (B ∨ (C ∧ ¬A))2) and
(2) {(A0, (B ∨ (C ∧ ¬A))1), (B0, B1)}⊢PSCB → A as follows:
(1):
1 [(A0, (B ∨ (C ∧ ¬A))1)] [Hypothesis]
2 [(B0, B1)] [Hypothesis]
3 [(C0, C1)] [Hypothesis]
4 (¬A0,¬(B ∨ (C ∧ ¬A))1) [1 and (C1)]

where ¬(B ∨ (C ∧ ¬A))1 ↔ (¬B ∧ (¬C ∨A))1

5 (C0, C1) ∧ (¬A0, (¬B ∧ (¬C ∨A))1) → ((C ∧ ¬A)0, (C ∧ ¬B ∧ (¬C ∨A))1) [(C2)]
6 ((C ∧ ¬A)0, (C ∧ ¬B ∧ (¬C ∨A))1) [3,4,5 and (Mp)]
7 (B0, B1) ∧ ((C ∧ ¬A)0, (C ∧ ¬B ∧ (¬C ∨A))1)

→ ((B ∨ (C ∧ ¬A))0, (B ∨ (C ∧ ¬B ∧ (¬C ∨A)))1) [(C3)]
where B ∨ (C ∧ ¬B ∧ (¬C ∨A)) ↔ B ∨ (C ∧A)

8 ((B ∨ (C ∧ ¬A))0, (B ∨ (C ∧A))1) [2, 6, 7 and (Mp)]
9 ((B ∨ (C ∧A))0, (B ∨ (C ∧ ¬A))1) [similar to above]
10 ((B ∨ (C ∧A))1, (B ∨ (C ∧ ¬A))2) [(P4)]
11 ((B ∨ (C ∧ ¬A))0, (B ∨ (C ∧A))1) ∧ ((B ∨ (C ∧A))1, (B ∨ (C ∧ ¬A))2)

→ ((B ∨ (C ∧ ¬A))0, (B ∨ (C ∧ ¬A))2) [(E3)]
12 ((B ∨ (C ∧ ¬A))0, (B ∨ (C ∧ ¬A))2) [8,10,11 and (Mp)]

So, B ∨ (C ∧ ¬A) is paradoxical and τ(B ∨ (C ∧ ¬A)) = 2 relative to circular referential re-
lations {(A0, (B ∨ (C ∧ ¬A))1), (B0, B1), (C0, C1)}.

- 5 -

(2):
1 [(A0, (B ∨ (C ∧ ¬A))1)] [Hypothesis]
2 [(B0, B1)] [Hypothesis]
3 [B0] [Hypothesis]
4 (B0, B1) → (B0 → B1) [(P1)]
5 B0 → B1 [2,4 and (Mp)]
6 B1 [3,5 and (Mp)]
7 B1 → (B ∨ (C ∧ ¬A))1 [(A6)]
8 (B ∨ (C ∧ ¬A))1 [6,7 and (Mp)]
9 (A0, (B ∨ (C ∧ ¬A))1) → ((B ∨ (C ∧ ¬A))1, A0) [(E2)]
10 ((B ∨ (C ∧ ¬A))1, A0) [1,9 and (Mp)]
11 ((B ∨ (C ∧ ¬A))1, A0) → ((B ∨ (C ∧ ¬A))1 → A0) [(P1)]
12 (B ∨ (C ∧ ¬A))1 → A0 [10,11 and (Mp)]
13 A0 [8, 12 and (Mp)]
14 (B → A)0 [3, 13 and DT]

3 Cn Logic

At first we consider the following definition: (1) A =df B ∨ (C ∧ ¬A). Here A is the definiendum
and DA(A) = B ∨ (C ∧ ¬A) is the definienda of A. And in this case, DA(A) has the definiendum
A itself as a subformula. So, we say that the definienda DA(A) is a self-referential form.
Assume that (2) ¬B ∧ C and (3) A hold. By (1), (3) and (Df-Elim), we get B ∨ (C ∧ ¬A).
And the conjunction of the result and (2) yields (¬B ∧ C) ∧ (B ∨ (C ∧ ¬A)) ↔ ¬A. So, we
have A → ¬A. Similarly, if we assume ¬B ∧ C and ¬A, then we have ¬A → A. Hence we have
A ↔ ¬A under the assumption of (2). To deal with such a circular definition, Gupat proposed
the definitional calculus based on the natural deduction system and called Cn. His system
was defined as a predicate calculus, but here we will introduce the propositional version of Cn,
because of doing the comparison between PSC and Cn in the later section.

Let LC =< FORC ,¬,∧,∨,→,=df ,=,⊤,⊥ > be a language of the definitional calculus,
where =df is a definition constructor like A =df DA such that A is the definiendum and DA is
the definienda of A, and = is an identity connective and we need this connective when replac-
ing the identity formulas in the definienda. Then the formulas FORC of a language LC are
generated in the usual way from an infinite set V ARC of sentential variables and constants ⊤,
⊥ by the standard truth functional connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction)
and → (material implication) as well as = (identity) and =df (definitional constructor).
(1) V ARC =

∪
i∈N V ARi, where V ARi = {pi, qi, ri, . . .}

(2) V ARC ⊆ FORC

(3) ∀Ai, Bi, Di−1
A ∈ FORC =⇒ ¬Ai, Ai ∧Bi, Ai ∨Bi, Ai → Bi, Ai = Bi, Ai =df Di−1

A ∈ FORC

We will introduce several terminologies with the definition as follows:
(1) For any definition A =df DA(A), if the definienda of A includes the definiendum A itself,
then we say that the definition is a circular definition. Otherwise, is a non-circular definition.
So, any definition that has a self-referential form is a circular definition.
(2) For a set D of several circular definitions of A, the sequence of A generated by applying two
derivation rules (Df-Intro) and (Df-Elim) to D was called a revision sequence for A. A revision
stage number i of Ai shows the current position for the process of revision.
(3) For any circular definition A =df DA(A), if the truth value of A converges in some con-
stants(true or false), then we say that A is categorical. Otherwise, is paradoxical, and whose
truth value oscillates in the revision sequence.

- 6 -

A natural deduction system Cn for the language LC is defined in the following way: ∀i, j ∈ Z,

Ai (A → B)i

Bi
(→ Elim)

(k)

[Ai]
...
Bi

(A → B)i
(→ Intro)(k)

(A ∧B)i

Ai
(∧Elim1)

(A ∧B)i

Bi
(∧Elim2) Ai Bi

(A ∧B)i
(∧Intro)

(A ∨B)i

(k)

[Ai]
...
Ci

(k)

[Bi]
...
Ci

Ci
(∨Elim)(k) Ai

(A ∨B)i
(∨Intro1) Bi

(A ∨B)i
(∨Intro2)

¬¬Ai

Ai
(¬Elim)

(k)

[Ai]
...
⊥i

(¬A)i
(¬Intro)(k)

⊥i

Ai
(⊥Elim) Ai ¬Ai

⊥i
(⊥Intro)

(A = B)i DA(A)
i

DB(B)
i

(= Elim)
(A = A)i

(= Intro)

Ai =df Di−1
A Ai

DA
i−1

(Df − Elim)
Ai+1 =df Di

A DA
i

Ai+1
(Df − Intro)

Ai

Aj
(IS) Ai

Ai±n
(ISn) (∃n ∈ N)

and also the identity connective = is an equivalence relation, so we assume the following rules:
(A = B)i

(B = A)i
(= Sym)

(A = B)i (B = C)i

(A = C)i
(= Tran)

An occurrence of Ai in a derivation indicates the relative position of the step in a revision
process. A must not contain any defined symbols in (IS), but may contain these in (ISn). So,
if DA has not any defined symbols, i.e., A has a non-circular definition, then the indices are
dispensable in all contexts by (IS) rule. For example,

(1) [Ai] [Hypothesis]
(2) Di−1

A [(1) and (Df-Elim)]

(3) Dj−1
A [(2) and (IS)]

(4) Aj [(3) and (Df-Intro)]
Thus, because the indices do not work with non-circular definitions, they can be eliminated.
Here the inference rules of →,∧,∨,¬,⊥ will give the classical natural deduction system NK,

and if we will restrict an only non-circular definition, then each definition A =df DA is collapsed
into the logical equivalence A ↔ DA in Cn. Also we call a system Cn except for (ISn) rule
C0. Thus we have C0 = NK + (Df − Elim) + (Df − Intro) + (= Elim) + (= Intro) + (IS) and
Cn = C0 + (ISn).

- 7 -

Definition 3.1 (Derivability) Let D be a set of definition in a language LC , A a formula
and Cn(or C0) a system in LC . Then we say that:
(1) A is derivable from D in C0, we write D⊢C0A iff a derivation of A0 can be constructed in
C0 from D. If D = ∅, we write ⊢C0A, and we say that A is a theorem of C0 relative to D.
(2) Aj is derivable in Cn on the basis of D from a set X of indexed formulas, we write
X⊢CnA

j iff there is a derivation of Aj in Cn on the basis of D from some indexed formu-
las Bi1

1 , Bi2
2 , . . . , Bim

m that belong to X.
(3) A is derivable in Cn on the basis of D from a set X of indexed formulas, we write X⊢CnA
iff there are formulas B1, B2, . . . , Bm ∈ X such that B0

1 , B
0
2 , . . . , B

0
m⊢CnA

0. If X = ∅, we write
⊢CnA, and we say that A is a theorem of Cn relative to D.

Proposition 3.2 Let D = {A =df DA, B =df DB} be circular definitions of A and B, then we
can prove the following as drived rules:
(1) ¬Ai+1⊢C0¬Di

A (¬Df-Elim)
(2) ¬Di

A⊢C0¬Ai+1 (¬Df-Intro)
(3) (A%B)i+1⊢C0(DA%DB)i where % ∈ {∧,∨,→,=}
(4) (DA%DB)i⊢C0(A%B)i+1 where % ∈ {∧,∨,→,=}
(5) (DA ↔ EA)i =⇒ Ai+1⊢C0E

i
A

(6) (A ↔ C)i+1 =⇒ Ci+1⊢C0D
i
A

Proof. (1) and (2):

(Hypothesis)

[¬Ai+1]

(k)

[Di
A]

Ai+1
(Df − Intro)

⊥i+1
(⊥Intro)

⊥i
(IS)

¬Di
A

(¬Intro)(k)

(Hypothesis)

[¬Di
A]

(k)

[Ai+1]

Di
A

(Df − Elim)

⊥i
(⊥Intro)

⊥i+1
(IS)

¬Ai+1
(¬Intro)(k)

(3):(i) (A ∧B)i+1⊢C0(DA ∧DB)i

(Hypothesis)

[(A ∧B)i+1]

Ai+1
∧(Elim1)

Di
A

(Df − Elim)

(Hypothesis)

[(A ∧B)i+1]

Bi+1
∧(Elim2)

Di
B

(Df − Elim)

(DA ∧DB)i
(∧Intro)

(ii) (A ∨B)i+1⊢C0(DA ∨DB)i

(Hypothesis)

[(A ∨B)i+1]

(k)

[Ai+1]

Di
A

(Df − Elim)

(DA ∨DB)i
∨(Intro1)

(k)

[Bi+1]

Di
B

(Df − Elim)

(DA ∨DB)i
∨(Intro2)

(DA ∨DB)i
(∨Elim)(k)

(iii) (A → B)i+1⊢C0(DA → DB)i and (iv) (A = B)i+1⊢C0(DA = DB)i

(k)

[Di
A]

Ai+1
(Df − Intro) (Hypothesis)

[(A → B)i+1]

Bi+1
(→ Elim)

Di
B

(Df − Elim)

(DA → DB)i
(→ Intro)(k)

(Hypothesis)

[(A = B)i+1] (DB = DB)i
(= Intro)

(DA = DB)i
(= Elim)

- 8 -

(4): we can prove the similar way to (3).
(5) and (6):

(Hypothesis)

[Ai+1]

Di
A

(Df − Elim)

(Hypothesis)

[(DA ↔ EA)i]

(DA → EA)i
(∧Elim1)

Ei
A

(→ Elim)

(Hypothesis)

[Ci+1]

(Hypothesis)

[(C ↔ A)i+1]

(C → A)i+1
(∧Elim2)

Ai+1
(→ Elim)

Di
A

(Df − Elim)

2

For example, let D1 = {A =df B ∨ (C ∧ ¬A)} be a circular definition of A. Then we can
prove that D1⊢C0B → A as follows:
1 [B0] [Hypothesis]
2 B−1 [1 and (IS)]
3 B−1 ∨ (C ∧ ¬A)−1 [2 and (∨Intro1)]
4 (B ∨ (C ∧ ¬A))−1 [syntactical equivalence]
5 A0 [4 and (Df-Intro)]
6 B0 → A0 [1,5 and (→Intro)]
7 (B → A)0 [syntactical equivalence]

Next let D2 = {A =df ¬A} be a circular definition of A. Then we can prove that D2⊢C3⊥ as
follows:

(l)

[¬A0]

(l)

[¬A0]

A1
(Df − Intro)

(k)

[A2]

¬A1
(Df − Elim)

⊥1
(⊥Intro)

⊥2
(IS)

¬A2
(¬Intro)(k)

A3
(Df − Intro)

A0
(IS3)

⊥0
⊥(Intro)

¬¬A0
¬(Intro)(l)

¬A1
(Df − Intro)

A2
(Df − Intro)

(drived : see leftside)

¬¬A0

¬¬A3
(IS3)

A3
(¬Elim)

¬A2
(Df − Elim)

⊥2
(⊥Intro)

⊥0
(IS)

Moreover, we can prove D2⊢C2m+1⊥, but D2 ⊬C2m⊥ for ∀m ∈ N such that m ≥ 1.

4 Some syntactic comparisons between PSC and Cn

At first we will introduce a general method of showing syntactical equivalence between various
logics owing to mainly K. Segerberg’s book [4]. For two logics which are formulated in very
different object languages, we can intuitively say that these logics are the same or at least
equivalent if they are equally strong, or they come to the same thing. We can also say this fact
if the languages in which they are formulated are intertranslatable, namely if what can be also
expressed in one language can be expressed in other one. And moreover, whenever a formula
in one logic is valid, then its counterpart in the other is also valid. We will define the above
notion of equivalent of logics more precisely in the following.

Suppose that L1 and L2 are two logics in the language L1 and L2 such that L1 = (L1, C1) and
L2 = (L2, C2) where C1 and C2 are structural consequence operators, i.e., Ci(X) = {A|X⊢Li

A}
(i = 1, 2) on L1 and L2, and the sets of formulas of which are L1 and L2, respectively. Fur-
thermore assume that the languages L1 and L2 have equivalence connectives ↔1 and ↔2,

- 9 -

respectively. Then we define syntactically equivalent of two logics L1 and L2 as follows.

Definition 4.1 (i) L1 and L2 are syntactically equivalent with respect to t1 and t2 if and only
if t1 : L1 → L2 and t2 : L2 → L1 are functions such that the following conditions are satisfied:
(1) for all α ∈ L1, (t2(t1(α)) ↔1 α) ∈ L1,
(2) for all A ∈ L2, (t1(t2(A)) ↔2 A) ∈ L2,
(3) for all α ∈ L1, α ∈ L1 iff t1(α) ∈ L2,
(4) for all A ∈ L2, A ∈ L2 iff t2(A) ∈ L1.

(ii) L1 and L2 are called syntactically equivalent if there exist functions t1 and t2 with respect
to which they are syntactically equivalent.

The definition of the above syntactic equivalence can be understood intuitively as follows.
Two functions t1 and t2 are to be understood as translations of one language into the other.
Conditions (1) and (2) are to denote a way of checking that two translations do their jobs
that at least they are inverse operations of one another. Conditions (3) and (4) are meant to
guarantee that both translations preserve logical relationships.

We can use the word ’extension’ as refer to either languages or logics. Suppose that
L1 = ⟨VAR1,BOP1,AdOP1,RNK1⟩ and L2 = ⟨VAR2,BOP2,AdOP2,RNK2⟩ are languages, where
VAR1 and VAR2 are denumerably infinite variables, BOP1 and BOP2 Boolean operators,
AdOP1 and AdOP2 additional non-Boolean operators, and RNK1 and RNK2 ranks, respec-
tively. Then we have the following definitions.

Definition 4.2 (i) L1 is a sublanguage of L2 or L2 is an extension of L1 if the following
conditions are satisfied:
(1) VAR1 ⊆ VAR2,
(2) BOP1 ⊆ BOP2,
(3) AdOP1 ⊆ AdOP2,
(4) RNK1 and RNK2 agree on BOP1 ∪ AdOP1.

(ii) If L1 = (L1, C1) and L2 = (L2, C2) are logics on L1 and L2 respectively, and in addition
to (1)-(4), also
(5) C1 ⊆ C2,

then we say that L1 is a sublogic of L2 or that L2 is an extension of L1.
(iii) Furthermore, an extension L2 of L1 is conservative over L1 if
(6) L1 = L2 ∩ (℘(L1) × ℘(L1)).

(iv) An extension L2 of L1 is definitional over L1 if it is satisfied in addition to (1)-(6), also
(7) VAR1 = VAR2.

Theorem 4.3 If L1 and L2 are logics such that L2 is a conservative definitional extension of
L1, then L1 and L2 are syntactically equivalent.

Next, we will consider translations between PSC and C0. We already introduced a language
of Gupta’s definitional calculus and its natural deduction system C0 in Section 3, so at first we
will define two translations tC and tP between C0-language LC and PSC-language LP in order
to investigate whether two logics C0 and PSC are syntactically equivalent or not with respect
to these maps in the sense of Definition 4.1.

Definition 4.4 The mapping tC : FORC → FORP , called a C -translation, is defined induc-
tively as follows:
(1) tC(p) := p, p ∈ V ARC ,
(2) tC((¬α)i) := ¬tC(αi),
(3) tC((α ∧ β)i) := tC(αi) ∧ tC(βi),
(4) tC((α ∨ β)i) := tC(αi) ∨ tC(βi),
(5) tC((α → β)i) := tC(αi) → tC(βi),
(6) tC((α = β)i) := (tC(αi), tC(βi)),
(7) tC(αi =df βj) := (tC(αi), tC(βj)).

- 10 -

Definition 4.5 The mapping tP : FORP → FORC , called a PSC-translation, is defined in-
ductively as follows:
(1) tP(p) := p, p ∈ V ARP ,
(2) tP((¬A)i) := ¬tP(Ai),
(3) tP((A ∧B))i := tP(Ai) ∧ tP(Bi),
(4) tP((A ∨B)i) := tP(Ai) ∨ tP(Bi),
(5) tP((A → B)i) := tP(Ai) → tP(Bi),
(6) tP(Ai → Bj) := tP(Ai) → tP(Bj),
(7) tP((A,B)i) := tP(Ai) = tP(Bi),
(8) tP((Ai, Bj)) := tP(Ai) =df tP(Bj).

For two maps tC and tP we can prove the following two propositions.

Proposition 4.6 For any formula φ in FORC , φ ∈ C0 implies tC(φ) ∈ PSC.

Proof. By induction on the length of derivation in C0.
(i) Base step: We have to check the provability of an axiom φ := (αi = αi) and a defini-
tion φ := (αi+1 =df βi) of C0 in PSC after a tC-translation. In the first case, we have
tC(φ) := tC(αi = αi) = (tC(αi), tC(αi)) = (Ai, Ai) ∈ PSC by (E1). In the second case,
tC(φ) := tC(αi+1 =df βi) = (tC(αi+1), tC(βi)) = (Ai+1, Bi) ∈ PSC by a pair sentence hypoth-
esis.
(ii) Induction step: We have to check the admissibility of every inference rules for {→,∧,∨,¬,
⊥,=, Df, IS} in PSC after a tC-translation. But the inference rules for Boolean connectives
are a routine work and so we omitted. Here we only show the cases of {=, Df, IS}.
(1) (= Elim): Assume that (α = β)i and φi

α(α). Then we have tC((α = β)i) = (tC(αi), tC(βi))
= (Ai, Bi) and tC(φi

α(α)) = tC(φi
α)(tC(αi)) = Di

A(Ai). By (C1)–(C5), (Ai, Bi) = (A,B)i

= (A ≡ B)i is a congruence relation, so we get tC(φi
α(β)) = tC(φi

α)(tC(βi)) = Di
A(Bi) from

Di
A(Ai). (2) (Df − Elim): Assume that αi =df φi−1

α and αi. Then we have tC(αi =df φi−1
α) =

(tC(αi), tC(φi−1
α)) = (Ai, Di−1

A) and tC(αi) = Ai. Here we have the following derivation:

Hypo
[Ai]

Hypo

[(Ai, Di−1
A)]

(P1)

(Ai, Di−1
A) → (Ai → Di−1

A)

Ai → Di−1
A

(Mp)

Di−1
A

(Mp)

(3) (Df − Intro): Assume that αi+1 =df φi
α and φi

α. Then we have tC(αi+1 =df φi
α) =

(tC(αi+1), tC(φi
α)) = (Ai+1, Di

A) and tC(φi
α) = Di

A. Here we have the following derivation:

Hypo
[Di

A]

Hypo
[(Ai+1, Di

A)]

(E2)

(Ai+1, Di
A) → (Di

A, A
i+1)

(Di
A, A

i+1)
(Mp) (P1)

(Di
A, A

i+1) → (Di
A → Ai+1)

Di
A → Ai+1

(Mp)

Ai+1
(Mp)

(4) (IS): Assume that αi. Then we have tC(αi) = Ai. Here we have the following derivation:

Hypo
[Ai]

Hypo
[(Ai, Aj)]

(P1)

(Ai, Aj) → (Ai → Aj)

Ai → Aj
(Mp)

Aj
(Mp)

2

Corollary 4.7 For any formula φ in FORC , φ ∈ Cn implies tC(φ) ∈ PSCn.

Proof. (5) (ISn): Assume that αi. Then we have tC(αi) = Ai. Here we have the following
derivation:

- 11 -

Hypo
[Ai]

(P5)

(Ai, Ai±n)

(P1)

(Ai, Ai±n) → (Ai → Ai±n)

Ai → Ai±n
(Mp)

Ai±n
(Mp)

2

Proposition 4.8 For any formula A in FORP , A ∈ PSC generally does not imply tP(A) ∈ C0.

Proof. We will investigate what is the matter to hold that A ∈ PSC implies tP(A) ∈ C0 by
induction on the length of derivation in PSC.
(i) Base step: We have to check the provability of every axioms of PSC in C0 after a tP-
translation. But the classical axioms (A1)–(A10) are a trivial, so we omitted. Here we only
check the cases of (E1)–(E3), (C1)–(C5) and (P1)–(P4).
(E1): tP((Ai, Ai)) = (tP(Ai) = tP(Ai)) = (αi = αi) ∈ C0 by (= Intro). Next, tP((Ai, Aj)) =
(tP(Ai) =df tP(Aj)) = (αi =df αj) ∈ C0 for i ̸= j by (= IS). (E2): tP((Ai, Bj) → (Bj , Ai)) =
tP((Ai, Bj)) → tP((Bj , Ai)) = (tP(Ai) =df tP(Bj)) → (tP(Bj) =df tP(Ai)) = (αi =df βj) →
(βj =df αi) ̸∈ C0. (E3): tP((Ai, Bj) ∧ (Bj , Ck) → (Ai, Ck)) = tP((Ai, Bj)) ∧ tP((Bj , Ck)) →
tP((Ai, Ck)) = (αi =df βj) ∧ (βj =df γk) → (αi =df γk) ̸∈ C0. (C1): tP((Ai, Bj) → (¬Ai,¬Bj))
= (tP(Ai) =df tP(Bj)) → (tP(¬Ai) =df tP(¬Bj)) = (αi =df βj) → (¬αi =df ¬βj) ∈ C0 by Propo-
sition 3.2 (1) and (2). (C2)–(C5): let % be a logical connective of {∧,∨,→} or identity =. Then
we have tP((Ai, Bj) ∧ (Ci, Dj) → ((A%C)i, (B%D)j)) = (αi =df βj) ∧ (γi =df δj) →
(α%γ)i =df (β%δ)j ∈ C0 by Proposition 3.2 (3) and (4). (P1): tP((Ai, Bj) → (Ai → Bj)) =
(αi =df βj) → (αi → βj) ∈ C0 by (Df − Elim). (P2): tP((Ai, Bj) ∧ (B ↔ C)j → (Ai, Cj)) =
(αi =df βj) ∧ (β ↔ γ)j → (αi =df γj) ∈ C0 by Proposition 3.2 (5). (P3): tP((Ai, Bj) ∧ (A ↔ C)i

→ (Ci, Bj)) = (αi =df βj) ∧ (α ↔ γ)i → (γi =df βj) ∈ C0 by Proposition 3.2 (6).
(P4): tP((Ai, Bj) → (Ai±n, Bj±n)) = (αi =df βj) → (αi±n =df βj±n) ̸∈ C0.
(ii) Induction step: We have to check the admissibility of (Mp) in C0 after a tP-translation.
(Mp): Assume that Ai, (A → B)i are provable in PSC. Then by I.H. tP(Ai), tP((A → B)i),
i.e., αi, αi → βi hold in C0. So, we have the derivation of tP(Bi) = βi in C0 by (→ Elim).

2

So, from the above results, the following conditions must be satisfied in C0 in order to hold
that A ∈ PSC implies tP(A) ∈ C0:
(1) (αi =df βj) → (βj =df αi)
(2) (αi =df βj) ∧ (βj =df γk) → (αi =df γk)
(3) (αi =df βj) → (αi±n =df βj±n) (∃n ≥ 0)

Here (1) means the exchangeability of indices between Ai+1 and Di
A. (2) means the transi-

tivity of indices both Ai+1 and Di
A. (3) means the relativity of indices both Ai+1 and Di

A.
If we extend the systems C0 and Cn by adding the above conditions (1)–(3) for a definition

constructor =df and call the result systems C′
0 and C′

n, then we have the following corollary.

Corollary 4.9 For any formula A in FORP ,
(1) A ∈ PSC implies tP(A) ∈ C′

0.
(2) A ∈ PSCn implies tP(A) ∈ C′

n.

Proof. Trivial from the above discussion.
Therefore we can prove the following two theorems.

Theorem 4.10 (1) For any formula φ in FORC , tP(tC(φ)) ↔ φ ∈ C′
0.

(2) For any formula A in FORP , tC(tP(A)) ↔ A ∈ PSC .

Proof. Both cases are almost trivial and will be omitted. 2

Theorem 4.11 (1) For any formula φ in FORC , φ ∈ C′
0 if and only if tC(φ) ∈ PSC.

(2) For any formula A in FORP , A ∈ PSC if and only if tP(A) ∈ C′
0.

- 12 -

Proof. By using Proposition 4.6, 4.7 and Theorem 4.10. 2

Corollary 4.12 (1) For any formula φ in FORC , φ ∈ C′
n if and only if tC(φ) ∈ PSCn.

(2) For any formula A in FORP , A ∈ PSCn if and only if tP(A) ∈ C′
n.

Hence we may conclude that two logics C′
0 and PSC (, and also similary C′

n and PSCn) are
syntactically equivalent by Definition 4.1, Theorem 4.10 and Theorem 4.11.

5 Conclusion

In this paper we have compared two logical systems PSC and Cn with a syntactical point of
view, and we had the following results:
(1) For any formula φ in FORC , φ ∈ C0 implies tC(φ) ∈ PSC, but the converse direction,
i.e., for any formula A in FORP , A ∈ PSC implies tP(A) ∈ C0, generally does not hold under
the two translations tC : FORC → FORP and tP : FORP → FORC . So, we say that C0

is a sublogic of PSC, or PSC is an extension of C0 by Definition 4.2. Similary, PSCn is an
extension of Cn.
(2) If we extend the systems C0 and Cn by adding the following conditions (i)–(iii) for a
definition constructor =df and call the result systems C′

0 and C′
n:

(i) (αi =df βj) → (βj =df αi) (exchangeability of indices)
(ii) (αi =df βj) ∧ (βj =df γk) → (αi =df γk) (transitivity of indices)
(iii) (αi =df βj) → (αi±n =df βj±n) (∃n ≥ 0) (relativity of indices)

Then, the converse direction also holds, i.e., for any formula A in FORP , A ∈ PSC implies
tP(A) ∈ C′

0, and also A ∈ PSCn implies tP(A) ∈ C′
n. As the result, two logics C′

0 and PSC (,
and also similary C′

n and PSCn) are syntactically equivalent by Definition 4.1, Theorem 4.10
and Theorem 4.11.

Next, we will consider the differences between PSC and C0. At first, the pair-sentence
constructor (()i , ()j), where i, j are some stage numbers, has an equivalence relation:(E1)–
(E3) and a relativity of indices:(P4), so we can calculate a referential cycle number of each
pair sentence in PSC, but not in C0. Secondly, PSC can deal with multiple pair sentences,
i.e., {(S0,¬P 1), (P 0,¬A1), (A0, S1)}, but it is difficult to deal with such multiple definitions
{S =df ¬P, P =df ¬A,A =df A} in C0 or Cn.

References

[1] A. Gupta and N. Belnap, The Revision Theory of Truth, MIT Press, Cambridge, 1993.

[2] T. Ishii, SCI for Pair-Sentence, Short papers of the 13th Studia Logica International
Conference on Trends in Logic XIII, University of Lódź, 2014.

[3] T. Ishii, A system of pair sentential calculus that has a representation of the Liar sentence,
Bulletin of NUIS, Niigata University of International and Information Studies, 2015.

[4] K. Segerberg, Classical Propositional Operators, Clarendon Press, Oxford, 1982.

[5] R. Suszko, Identity connective and modality, Studia Logica,vol.27(1971), pp.9–39.

[6] R. Suszko, The Fregean axiom and Polish mathematical logic in the 1920s, Studia Logica,
vol.36(1977), pp.377–380.

- 13 -

