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Abstract

This paper is an extended version of my talk in the Conference of Non-Classical Logics
2016 [7]. In this paper we will introduce a system that rejects the principle of identity “A
is A”, one of the third Aristotelian principles for thinking. The proposed system allows to
deal with paradoxical sentences, like a Liar sentence “A is not A”. We present both an
axiomatic system and an adequate semantics for it.
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1 Introduction

In the 1970’s, R. Suszko had attempted to formalize an ontology of facts in L. Wittgenstein’s
Tractatus on the basis of Fregean scheme, and called it non-Fregean logic. The sentential calcu-
lus with identity, SCI in short, is the most simplified version of his non-Fregean logic and can
be obtained by adding the sentential identity connective ≡ to the classical logic. Statements of
the form A ≡ B read as “A is identical with B”, which means that the referent of two sentences
are identical in the basis of Fregean scheme. From the axiom (SI): (A ≡ B) → (A → B), the
statement A ↔ B obviously does not imply A ≡ B and we may consider more than two situa-
tions (true and false), hence SCI is usually called a non-Fregean logic. Every equation in the
logical theorems of SCI is only a trivial A ≡ A, so SCI is very weak but many logical systems
can be simulated on Suszko’s theories of situation [10].

We have paid attention to the simulation property of SCI and attempt to deal with a simple
Liar sentence: “This sentence is not true” in SCI. Let’s define A=”This sentence is true”,
then we get A ≡ ¬A because the referent of two sentences A and ¬A are identical, but it’s
impossible logically by (SI). In order to overcome the matter, we have introduced a referential
relation of pair-sentence similar to identity ≡, i.e., (A0,¬A1), which means that a situation of
A on stage 0 is referential to the situation of ¬A on stage 1. The referential relation is similar
to identity, but more general notion just as a mutual link relation between sentences, even that
can be established between contradict sentences if we introduce the stage notion on which each
sentence is valid. We had proposed a pair sentential calculus, PSC [6] in short, which was
obtained from the classical one by adding a new pair-sentence connective (( )i, ( )j), where i, j
are some stage numbers.

It is usually assumed that several fundamental postulates implicitly hold in logical reasoning
by a priori. These postulates are called the third Aristotelian principles for thinking. The
first principle of identity says that “A is always A and not being ¬A”, the second principle of
contradiction says that “A is not both A and ¬A”, and the third principle of excluded middle
says that “either A is B or A is ¬B”. If we reject some of them, we get several kinds of non-
classical reasoning. For example [9], it is well known that de Morgan or intuitionistic reasonings
are obtained from the classical one by rejecting both principles of second and third or principle
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of third only, respectively. But we also think that it is useful to reject the first principle of
identity to proceed correctly the formal reasoning in several kinds of logical paradoxes that
appear between definition and definiendum of sentences.

We interpret a set of pair-sentences {(A,B0), (B0, B1), . . . , (Bn−1, A)} as a sequence of refer-
ential relation such that the referential recursive pattern: A B0 B1 . . . Bn−1A B0 B1 . . . holds
by following the ideas of H. G. Herzberger [5], A. Gupta [4] and L. H. Kauffman [8]. Then for the
principle of identity: “A is A”, we get a pair-sentence (A0, A1) which satisfies a sequential form:
A A A A A A . . .. Similarly, for a simple Liar paradoxical sentence: “This sentence is not true”,
we get a pair-sentence (A0, (¬A)1) which satisfies a sequential form: A ¬A A ¬A A ¬A . . . un-
der the assumption of ¬¬A ↔ A holds on each stage. We get typically four forms: (A0, A1),
(¬A0,¬A1), (¬A0, A1) and (A0,¬A1) as the most simple referential relations. (A0, A1) and
(¬A0,¬A1) correspond to truth-taller and false-taller, respectively, and both (¬A0, A1) and
(A0,¬A1) to simple Liar paradoxes. If we will axiomatize the pair-sentence calculus similar to
SCI manners, then the obtained system is not as one of four-valued logic [3], but as a classical
two-valued logic according to Suszko’s Thesis of bivalence [2].

2 PSC Logic

Let LP =< FORP ,¬,∧,∨,→, (( )i, ( )j),⊤,⊥ > be a language of the sentential calculus with
a pair-sentence connective. The formulas FORP of a language LP are generated in the usual
way from an infinite set V ARP of sentential variables, constants ⊤(true) and ⊥(false) by the
standard truth functional connectives ¬( negation), ∧ (conjunction), ∨ (disjunction) and →
(material implication) as well as the pair-sentence constructor (( )i, ( )j), where i, j ∈ N are
some stage numbers. In our language LP , we assume that every sentential variables are defined
on an initial stage number 0 ∈ N. So, we have:
(1) V ARP =

∪
i∈N V ARi, where V ARi = {pi, qi, ri, . . .} (∀i ∈ N)

(2) V ARP ⊆ FORP

(3) ∀A,B ∈ FORP =⇒ ¬A,A ∧B,A ∨B,A → B, (A,B) ∈ FORP

Also we may use the same parentheses as auxiliary symbols even assume that the priority
of each connective are weak as ¬, ∧, ∨, →, ( , ) in order. Throughout this paper the letters
p, q, r, p0, p1, p2, . . . will be used to denote any variables, the letters A, B, C, A0, A1, A2,
. . . formulas of a language LP , the letters X, Y , Z, . . . sets of formulas, and Greek letters
Γ,Σ,∆, . . . sets of pair-sentence formulas. Moreover, two constants ⊤ and ⊥ are defined as
A0 ∨ (¬A)0 and A0 ∧ (¬A)0, respectively. At first we will introduce several terminology with
pair-sentence as the following.

Definition 2.1 (Pair-sentence) (1) For any sentence A0 ∈ FORP , if there exist some
sentence B0 ∈ FORP such that “A0 is B0” is also a new sentence, then we assume
that there exists (A0, B1) ∈ FORP , which means that there exists A1 on the next stage
of A0 such that A1 is referential to B0, and call (A0, B1) a pair-sentence formula of A0

and B0. Otherwise, we assume that there exists a senetnce (A0, A0) ∈ FORP , and call
(A0, A0) a unit of pair-sentence formula for A0. The superscript of each formula shows
the referential stage number on which the formula is valid.

(2) The referential stage numbering of composed formulas is the following: for any stage
numbers i, j, k ∈ N,

(i) (¬Ai)j ⇐⇒ ¬(Ai+j)
(ii) (Ai % Bj)k ⇐⇒ Ai+k % Bj+k where % ∈ {∧,∨,→}

(iii) (Ai, Bj)k ⇐⇒ (Ai+k, Bj+k)

(3) For any pair-sentence formula (Ai, Bj) ∈ FORP (∃i, j ∈ N), both values of stage number
i and j are relative to each other because the interval of each stage number of formulas
is absolute for the validity of each formula. So, we assume that: (Ai, Bj) → (Ai, Bj)±n
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for every n ∈ N. Otherwise, if some sentence A has only a unit of pair-sentence formula,
then we assume that: Ai → (Ai)±n for every i, n ∈ N.

The referential stage number will start from 0 and increase with depending on the referential
frequency like 0, 1, 2, 3, . . .. If there exists a new sentence “A is B” for some sentences A,B on
stage 0, then we assume a pair-sentence formula (A0, B1), which intends to show the referential
relation between a sentence A on some stage (e.g., 0) and a sentence B on the next stage (e.g.,
1). So, if we keep the interval of each stage number, then the referential relation also holds
even if each stage number of formulas shift to another by the same value. On the other hand, if
such a pair-sentence does not exist for some sentence A on stage 0, then the sentence A keeps
its validity among on any stages.

Example 2.2 (1) ∀A0 ∈ FORP , “A0 is A0” ⇐⇒ ∃(A0)0, (A0)1, ((A0)0, (A0)1) ∈ FORP

by Definition 2.1 (1). We have (A0)0 ⇐⇒ A0 and (A0)1 ⇐⇒ A1 by Definition 2.1 (2).
So, we get {”A0 is A0”} ⇐⇒ Γ1 = {(A0, A1)}.

(2) Similarly, for any A0, B0, C0 ∈ FORP ,
(i) {”A0 is not A0”} ⇐⇒ Γ2 = {(A0,¬A1)}

(ii) {”A0 is not B0”, ”B0 is not C0”, ”C0 is A0”}
⇐⇒ Γ3 = {(A0,¬B1), (B0,¬C1), (C0, A1)}

In SCI, we can interpret “A0 is A0” as A0 ≡ A0 and “A0 is not A0” as A0 ≡ (¬A)0. So,
we could not deal with a Liar sentence in SCI since both of A and ¬A are not identical on
the same stage number 0. But it is possible in PSC because that A and its negation ¬A are
interpreted on the different stage numbers 0 and 1, respectively from Example 2.2.

Definition 2.3 Let Γ be a set of pair-sentence formulas {(A0, B1
1), (B0

1 , B
1
2), (B0

2 , B
1
3), . . . ,

(B0
n−1, B

1
n)} (∃n ∈ N). Then we get Γ = {(A0, B1

1), (B1
1 , B

2
2), (B2

2 , B
3
3), . . . , (Bn−1

n−1 , B
n
n)} by

Definition 2.1(3). So,

(1) We say that a sequence of formulas A0B1
1B

2
2 · · ·Bn

n is a referential pattern of formula A
generated from Γ.

(2) If A is belong to a set of formulas {B1
1 , B

2
2 , . . . , B

n
n}, we say that A has a circular referential

relation with respect to Γ. Otherwise, A has a non-circular referential relation with respect
to Γ.

(3) The referential cycle number of A with respect to Γ, τ(A,Γ) in symbol, is defined as
follows:
(i) τ(A,Γ) = 0 if A ̸∈ {B1

1 , B
2
2 , . . . , B

n
n},

(ii) τ(A,Γ) = n if A ∈ {B1
1 , B

2
2 , . . . , B

n
n} and A = Bn

n .
So, if A has a circular referential relation with respect to Γ, τ(A,Γ) ≥ 1. Otherwise,
τ(A,Γ) = 0.

(4) If τ(A,Γ) ≤ 1, we say that A is categorical with respect to Γ. Otherwise, A is paradoxical
with respect to Γ.

Example 2.4 We assume that the classical reasoning holds on each stage i and (¬¬A ↔ A)i

implies (¬¬A,A)i. Then we have:

(1) Let Γ1 be {(A0, A1)}. Then we have A0A1A2 . . . as a referential pattern of formula A
generated from Γ1. So, we get τ(A,Γ1) = 1.

(2) Let Γ2 be {(A0,¬A1)}. Then we have A0(¬A)1A2(¬A)3 . . . as a referential pattern of
formula A generated from Γ2. So, we get τ(A,Γ2) = 2.
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(3) Let Γ3 = {(A0,¬B1), (B0,¬C1), (C0, A1)}. Then we have A0(¬B)1C2A3 . . . as a referen-
tial pattern of formula A generated from Γ3. So, we get τ(A,Γ3) = 3. Similarly, we get
τ(B,Γ3) = 3 and τ(C,Γ3) = 3.

Definition 2.5 (PSC system) The axiomatic system PSC consists of two sets of schema
TFA (truth functional axioms) and PSA (pair-sentence axioms) below. The only rule of
inference is modus ponens:
(A1) A → (B → A)
(A2) (A → (B → C)) → ((A → B) → (A → C))
(A3) A ∧B → A
(A4) A ∧B → B
(A5) A → (B → A ∧B)
(A6) A → A ∨B
(A7) B → A ∨B
(A8) (A → C) → ((B → C) → (A ∨B → C))
(A9) (A → B) → ((A → ¬B) → ¬A)
(A10) ¬¬A → A
(E1) (A0, A0)
(E2) (A,B) → (B,A)
(E3) (A,B) ∧ (B,C) → (A,C)
(C1) (A,B) → (¬A,¬B)
(C2) (Ai, Bj) ∧ (Ci, Dj)k → ((A0 ∧ Ck)i, (B0 ∧Dk)j) (∀i, j, k ∈ N)
(C3) (Ai, Bj) ∧ (Ci, Dj)k → ((A0 ∨ Ck)i, (B0 ∨Dk)j) (∀i, j, k ∈ N)
(C4) (Ai, Bj) ∧ (Ci, Dj)k → ((A0 → Ck)i, (B0 → Dk)j) (∀i, j, k ∈ N)
(C5) (Ai, Bj) ∧ (Ci, Dj)k → ((A0, Ck)i, (B0, Dk)j) (∀i, j, k ∈ N)
(P1) (A,B) → (A → B)
(P2) (A,B) → (A,B)±n (∀n ∈ N)
(P3) A → A±n (∀n ∈ N) if A has only a unit of pair-sentence formula

(Mp) A A → B
B

The axioms in TFA with modus ponens as a single rule give an axiomatic system CL for
the classical sentential logic. If we define a system PSC0 by restricting the stage number as
0 ∈ N in a language LP , i.e., “A0 is B0” ⇐⇒ there exist A0, B0, (A0, B0) ∈ FORP

0,
and hence, eliminating axioms (P2) and (P3) from PSC. Then the system PSC0 is collapsed
into systems SCI because that we can regard any pair-sentence formula (A,B)0 as an identity
formula (A ≡ B)0 in SCI on stage 0.

Definition 2.6 (Derivability) Let Γ be a finite set of pair-sentence formulas in a language
LP , X a finite set of formulas, A a formula and PSC a system in LP . Then we say that:

(1) Aj is derivable from X based on Γ in PSC, PSC, X ⊢Γ Aj in symbol, if there is a sequence

of formulas Bi1
1 , Bi2

2 , . . . , B
in−1

n−1 , B
in
n (n ≥ 1) such that Bin

n = Aj and every formula in the

sequence Bi1
1 , Bi2

2 , . . . , B
in−1

n−1 , A
j is either an axiom of PSC, or belongs to X ∪ Γ, or is

obtained by (Mp) rule from formulas occurring before it in the sequence. n is a length of
derivation Aj from X based on Γ in PSC.

(2) A is derivable from X based on Γ in PSC, PSC, X ⊢Γ A in symbol, if there is a sequence
of formulas B0

1 , B
0
2 , . . . , B

0
n−1, B

0
n(n ≥ 1) such that B0

n = A0 and every formula in the
sequence B0

1 , B
0
2 , . . . , B

0
n−1, A

0 is either an axiom of PSC, or belongs to X ∪ Γ, or is
obtained by (Mp) rule from formulas occurring before it in the sequence.

(3) If X = ∅, PSC ⊢Γ A in symbol, A is a theorem of PSC based on Γ.

Example 2.7 Let Γ1 = {(A0,¬A1)} and Γ2 = {(A0,¬A1), (A0, A3)}. Then,
(1) PSC, A0 ⊢Γ1 ¬A1
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(2) PSC ⊢Γ1 (A0,¬¬A2)
(3) PSC ⊢Γ2 ⊥

Proof. (1): 1. (A0,¬A1) → (A0 → ¬A1) (P1)
2. A0 → ¬A1 (Γ1,1,Mp)
3. A0 (Hypothesis)
4. ¬A1 (2,3,Mp)
(2): 1. (A0,¬A1) → (A1,¬A2) (P2)
2. (A1,¬A2) (Γ1,1,Mp)
3. (A1,¬A2) → (¬A1,¬¬A2) (C1)
4. (¬A1,¬¬A2) (2,3,Mp)
5. (A0,¬A1) ∧ (¬A1,¬¬A2) → (A0,¬¬A2) (E3)
6. (A0,¬¬A2) (Γ1,4,5,Mp)
(3): 1. [A0] (Hypothesis)
2. ¬A1 (P1:A0 ∧ (A0,¬A1) → ¬A1)
3. [¬A2] (Hypothesis)
4. A1 (3,P1:¬A2 ∧ (A0,¬A1) → A1)
5. (⊥)1 (2,4)
6. (⊥)2 (5,P3:⊥1 → ⊥2)
7. A2 (3,6)
8. ¬A3 (7,P2,P1:A2 ∧ (A0,¬A1) → ¬A3)
9. ¬A0 (Γ2 : ¬A3 → ¬A0)
10. ¬A0 (1,9)
11. A1 (10, C1, P1:¬A0 ∧ (¬A0,¬¬A) → ¬¬A1 → A1)
12. ¬A2 (11, P1:A1 ∧ (A0,¬A1) → ¬A2]
13. ¬A3 (10,Γ2 : ¬A0 → ¬A3)
14. A2 (13,P2,P1:¬A3 ∧ (A0,¬A1) → A2)
15. (⊥)2 (12,14)
16. (⊥)0 (15,P3:⊥2 → ⊥0)

2

Lemma 2.8 For a finite set of pair-sentence formulas Γ, any finite sets of formulas X,Y and
any formulas A,B,C, we have the following: ∀i, j, k ∈ N,

(1) PSC, Ck ⊢Γ Ck holds.

(2) PSC, X ⊢Γ Ck implies PSC, Ai, X ⊢Γ Ck.

(3) PSC, Ai, Ai, X ⊢Γ Ck implies PSC, Ai, X ⊢Γ Ck.

(4) PSC, X,Ai, Bj , Y ⊢Γ Ck implies PSC, X,Bj , Ai, Y ⊢Γ Ck.

(5) PSC, X ⊢Γ Ai and PSC, Ai, Y ⊢Γ Ck imply PSC, X, Y ⊢Γ Ck.

Theorem 2.9 (Deduction Theorem) For a finite set of pair-sentence formulas Γ, a finite
set of formulas X and any formulas A,B, PSC, X,Ai ⊢Γ Bj implies PSC, X ⊢Γ Ai → Bj for
any i, j ∈ N.

Proof. Fix X and Ai and we prove by induction on the length k of derivation Bj from X and
Ai based on Γ in PSC. (i) Base step: We have to check the three cases: (case 1): Bj is one
of axioms. Then we have the derivation using the axiom (A1): both Bj → (Ai → Bj) and Bj

imply Ai → Bj . Hence we have PSC, X ⊢Γ Ai → Bj . (case 2): Bj is one of X ∪ Γ. This case
is similar to the above. (case 3): Bj is just Ai. We have Ai → Ai as a theorem of PSC (see
Proposition 2.13). (ii) Induction step: We have to check the four cases. But the first three

cases are similar to the base step. (case 4): Bj is a result of derivation from A
ig
g and Aih

h where
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g, h ≤ k. Then A
ig
g is Aih

h → Bj or (Aih
h , Bj). Because of g, h ≤ k, we can apply the induction

hypothesis to A
ig
g and Aih

h . Hence we have the following:
(see Proposition 2.13)

(Ai → (Aih
h , Bj)) → (((Aih

h , Bj) → (Aih
h → Bj)) → (Ai → (Aih

h → Bj)))

(I.Hypo)

Ai → (Aih
h , Bj)

((Aih
h , Bj) → (Aih

h → Bj)) → (Ai → (Aih
h → Bj))

(see above)

((Aih
h , Bj) → (Aih

h → Bj)) → (Ai → (Aih
h → Bj))

(P1)

(Aih
h , Bj) → (Aih

h → Bj)

Ai → (Aih
h → Bj)

(see Proposition 2.13)

(Ai → Aih
h ) → ((Ai → (Aih

h → Bj)) → (Ai → Bj))

(I.Hypo)

Ai → Aih
h

(Ai → (Aih
h → Bj)) → (Ai → Bj)

(see above
or I.Hypo)

Ai → (Aih
h → Bj)

Ai → Bj

So, PSC, X ⊢Γ Ai → Bj holds.
2

Definition 2.10 Let Γ be a finite set of pair-sentence formulas and X a finite set of formulas
in a language LP . Then we say that: (see [1])

(1) X is a theory if {A;PSC, X ⊢Γ A} = X.

(2) X is consistent if {A;PSC, X ⊢Γ A} ̸= FORP .

(3) X is complete, (or maximal consistent) if there does not exist a consistent set Y such that
X ⊂ Y .

Proposition 2.11 For a finite set of pair-sentence formulas Γ, finite sets of formulas X,Y
and any formula A, we have the following:

(1) PSC, X ⊢Γ A if and only if PSC, {A;PSC, X ⊢Γ A} ⊢Γ A.

(2) For every consistent set X, there exists a complete set Y such that X ⊆ Y .

(3) For every complete set X, X is a theory.

(4) If PSC, X ̸⊢Γ A, there is a complete set Y such that X ⊆ Y and A /∈ Y .

Definition 2.12 (Elementary extensions of PSC) Let us assume the following additional
axioms:

(P4) (Ai, Bj) ∧ (B ↔ C)j → (Ai, Cj) (∀i, j ∈ N)
(P5) (A,A±n) (∃n ≥ 1) (n− reflexivity)

Then, some elementary extensions of PSC are defined as follows:

(1) PSCB
def
= PSC ∪ {(P4)}

(2) PSCn
def
= PSC ∪ {(P5)}

(3) PSCBn
def
= PSC ∪ {(P4), (P5)}

Proposition 2.13 For any A,B ∈ FORP , the following are theorems of PSC based on Γ = ∅ :

(1) The classical tautology formulas.

(2) The pair-sentence tautology formulas:
(1◦) PSC ⊢∅ (A,B) ↔ (B,A)
(2◦) PSC ⊢∅ (A,B) → (A ↔ B)
(3◦) PSC ⊢∅ ¬(A,¬A)
(4◦) PSC ⊢∅ (A,⊤) → A
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(5◦) PSC ⊢∅ (A,⊥) → (¬A)
(6◦) PSC ⊢∅ ((A,B),⊤) → (A,B)
(7◦) PSC ⊢∅ ((A,B),⊥) → ¬(A,B)
(8◦) PSC ⊢∅ ((A → B),⊤) → (A → B)

Proof. (1): Suppose that there exist any formulas on stage 0 ∈ N. Then we can prove that
every classical tautology formulas are also tautology in PSC. For example, PSC ⊢∅ A → A is
proved as follow:
1. (A0 → ((A0 → A0) → A0)) → ((A0 → (A0 → A0)) → (A0 → A0)) (A2)
2. (A0 → ((A0 → A0) → A0)) (A1)
3. (A0 → (A0 → A0)) → (A0 → A0) (1,2,Mp)
4. A0 → (A0 → A0) (A1)
5. A0 → A0 (4,5,Mp)
6. (A → A)0 (Definition 2.1(2))
Moreover, PSC ⊢∅ ¬Ai → (Ai → Bj) is proved as follow:
1. [¬Ai] (Hypothesis)
2. [Ai] (Hypothesis)
3. (⊥)i (1,2)
4. (⊥)j (P3:⊥i → ⊥j)
5. Bj (CL:⊥j → Bj)
6. Ai → Bj (DT)
7. ¬Ai → (Ai → Bj) (DT)
(2): Similar to the above. For example, (3◦) is proved as follow:
(3◦): 1. (A0,¬A0) → (A0 → ¬A0) (P1)
2. ¬(A0 → ¬A0) → ¬(A0,¬A0) (1,(1):(A0 → B1) ↔ (¬B1 → ¬A0))
3. ¬(A0,¬A0) ((1):¬(A0 → ¬A0),2,Mp)

2

Proposition 2.14 For any A,B,C ∈ FORP , the following are theorems of PSCB based on
Γ = ∅ :

(1) The classical tautology formulas.

(2) The pair-sentence tautology formulas additionally have the following:
(1◦) PSCB ⊢∅ (A,B) ↔ (¬A,¬B)
(2◦) PSCB ⊢∅ (Ai, Bj) ∧ (A ↔ C)i → (Ci, Bj) (∀i, j ∈ N)
(3◦) PSCB ⊢∅ (¬⊤,⊥)
(4◦) PSCB ⊢∅ ((A → A),⊤)
(5◦) PSCB ⊢∅ (A ∨ ¬A,B ∨ ¬B)
(6◦) PSCB ⊢∅ (A ∧ ¬A,B ∧ ¬B)
(7◦) PSCB ⊢∅ (¬¬A,A)
(8◦) PSCB ⊢∅ (¬(A ∨B),¬A ∧ ¬B)
(9◦) PSCB ⊢∅ (¬(A ∧B),¬A ∨ ¬B)
(10◦) PSCB ⊢∅ (A ∧ ⊤, A)
(11◦) PSCB ⊢∅ (A ∨ ⊥, A)

Proof. (1),(2): The same way as Proposition 2.13. For example, (2◦) and (4◦) are proved as
follow:
(2◦): 1. (Ai, Bj) ∧ (A ↔ C)i (Hypothesis)
2. (Ai, Bj) (1,A3,Mp)
3. (A ↔ C)i (1,A4,Mp)
4. (Ai, Bj) → (Bj , Ai) (E2)
5. (Bj , Ai) (2,4,Mp)
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6. (Bj , Ai) ∧ (A ↔ C)i (5,3,A5,Mp)
7. (Bj , Ci) (6,P4:(Bj , Ai) ∧ (A ↔ C)i → (Bj , Ci),Mp)
8. (Bj , Ci) → (Ci, Bj) (E2)
9. (Ci, Bj) (7,8,Mp)
(4◦): 1. ((A → A)0, (A → A)0) (E1)
2. (A → A)0 ↔ (¬A ∨A)0 (CL)
3. ((A → A)0, (A → A)0) ∧ ((A → A) ↔ (¬A ∨A))0 (1,2,A5,Mp)
4. ((A → A)0, (¬A ∨A)0) (1,2,3,P4,Mp)
5. ((A → A),⊤)0 (⊤ := (A0 ∨ ¬A0))

2

Proposition 2.15 Let Γ1 = {(A0, A1)} be a set of pair-sentence formulas. Then for any
A ∈ FORP and m,n ∈ N, the following are theorems of PSC (also PSCB) based on Γ1 :

(1) The classical tautology formulas additionally have the following:
(1◦) PSC(also PSCB) ⊢Γ1 Am ∨ ¬An

(2◦) PSC(also PSCB) ⊢Γ1 ¬(Am ∧ ¬An)
(3◦) PSC(also PSCB) ⊢Γ1 Am ↔ An

(4◦) PSC(also PSCB) ⊢Γ1 ¬(Am ↔ ¬An)

(2) The pair-sentence tautology formulas additionally have the following:
(1◦) PSC(also PSCB) ⊢Γ1 (Am, An)
(2◦) PSC(also PSCB) ⊢Γ1 ¬(Am,¬An)

(3) PSC1(also PSCB1) ⊢∅ A if and only if PSC(also PSCB) ⊢Γ1 A.

Proof. (1),(2): The same way as Proposition 2.13 (and also 2.14), and additionally we can
prove the following:
1. (A0, A1) (Hypothesis of Γ1)
2. (A0, A1) → (A0, A1)1 (P2)
3. (A1, A2) (1,2,Mp)
4. (A0, A1) ∧ (A1, A2) → (A0, A2) (E3)
5. (A0, A1) ∧ (A1, A2) (1,3,A5,Mp)
6. (A0, A2) (4,5,Mp)
7. (A0, Al) (Similar to 1-6)
8. (A0, Al) → (A0, Al)m (P2)
9. (Am, An) (7,8,Mp, where n = l + m)
10. (Am, An) → (Am ↔ An) (Proposition 2.13)
11. Am ↔ An (9,10,Mp)
12. ¬(Am ↔ ¬An) (11,CL:(A0 ↔ B1) ↔ ¬(A0 ↔ ¬B1))
13. (Am,¬An) → (Am ↔ ¬An) (Proposition 2.13)
14. ¬(Am ↔ ¬An) → ¬(Am,¬An) (13, CL:(A0 → B1) ↔ (¬B1 → ¬A0))
15. ¬(Am,¬An) (12,14,Mp)
16. (Am, An) → (An, Am) (E2)
17. (An, Am) → (An → Am) (P1)
18. An → Am (9,16,17,Mp)
19. ¬An ∨Am (18, CL:(A0 → B1) ↔ (¬A0 ∨B1))
20. Am ∨ ¬An (19,CL : A0 ∨B1 ↔ B1 ∨A0)
21. ¬Am ∨An ↔ ¬¬(¬Am ∨An) (20,CL : ¬¬A ↔ A)
22. ¬¬(¬Am ∨An) ↔ ¬(¬¬Am ∧ ¬An) (21,CL : ¬(A ∨B) ↔ (¬A ∧ ¬B))
23. ¬(Am ∧ ¬An) (20, 21, 22,CL : ¬¬A ↔ A,Mp)

(3): PSC1 has (A,A±1) as an additional axiom. So, we have (A0, (A0)±1) ⇔ (A0, A±1). This
means equivalently to assume Γ1 = {(A0, A1)} in PSC.

2
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Proposition 2.16 Let Γ2 = {(A0,¬A1)} be a set of pair-sentence formulas. Then for any
A ∈ FORP and l,m, n ∈ N, the following are theorems of PSC based on Γ2 :

(1) The classical tautology formulas additionally have the following:

(1◦) PSC ⊢Γ2 Am ∨
l+1︷ ︸︸ ︷

¬ · · · ¬Am+l, and moreover,
PSC ⊢Γ2 Am ∨ ¬Am+2l′ (l = 2l′)
PSC ⊢Γ2 Am ∨Am+2l′+1 (l = 2l′ + 1)

(2◦) PSC ⊢Γ2 ¬(Am ∧
l+1︷ ︸︸ ︷

¬ · · · ¬Am+l), and moreover,
PSC ⊢Γ2 ¬(Am ∧ ¬Am+2l′) (l = 2l′)
PSC ⊢Γ2 ¬(Am ∧Am+2l′+1) (l = 2l′ + 1)

(3◦) PSC ⊢Γ2 Am ↔
l︷ ︸︸ ︷

¬ · · · ¬Am+l, and moreover,
PSC ⊢Γ2 Am ↔ Am+2l′ (l = 2l′)
PSC ⊢Γ2 Am ↔ ¬Am+2l′+1 (l = 2l′ + 1)

(4◦) PSC ⊢Γ2 ¬(Am ↔
l+1︷ ︸︸ ︷

¬ · · · ¬Am+l), and moreover,
PSC ⊢Γ2 ¬(Am ↔ ¬Am+2l′) (l = 2l′)
PSC ⊢Γ2 ¬(Am ↔ Am+2l′+1) (l = 2l′ + 1)

(2) The pair-sentence tautology formulas additionally have the following:

(1◦) PSC ⊢Γ2 (Am,

l︷ ︸︸ ︷
¬ · · · ¬Am+l)

(2◦) PSC ⊢Γ2 ¬(Am,

l+1︷ ︸︸ ︷
¬ · · · ¬Am+l)

Proof. (1),(2): The same way as Proposition 2.15.

2

Proposition 2.17 Let Γ2 = {(A0,¬A1)} be a set of pair-sentence formulas. Then for any
A ∈ FORP and l,m, n ∈ N, the following are theorems of PSCB based on Γ2 :

(1) The classical tautology formulas are the same as PSC based on Γ2.

(2) The pair-sentence tautology formulas additionally have the following:
(1◦) PSCB ⊢Γ2 (Am, Am+2l)
(2◦) PSCB ⊢Γ2 (Am,¬Am+2l+1)
(3◦) PSCB ⊢Γ2 ¬(Am,¬Am+2l)
(4◦) PSCB ⊢Γ2 ¬(Am, Am+2l+1)

(3) PSCB2 ⊢∅ A if and only if PSCB ⊢Γ2 A.

Proof. (1),(2): The same way as Proposition 2.14 and 2.15, and additionally if we notice that

(

2l′︷ ︸︸ ︷
¬ · · · ¬Am+2l′ ↔ Am+2l′) and (

2l′+1︷ ︸︸ ︷
¬ · · · ¬Am+2l′+1 ↔ ¬Am+2l′+1), then we can prove the follow-

ing:

(1◦) PSC ⊢Γ2 (Am,

l︷ ︸︸ ︷
¬ · · · ¬Am+l), hence,

PSCB ⊢Γ2 (Am, Am+2l′) (l = 2l′)
PSCB ⊢Γ2 (Am,¬Am+2l′+1) (l = 2l′ + 1)

(2◦) PSC ⊢Γ2 ¬(Am,

l+1︷ ︸︸ ︷
¬ · · · ¬Am+l), hence,

PSCB ⊢Γ2 ¬(Am,¬Am+2l′) (l = 2l′)
PSCB ⊢Γ2 ¬(Am, Am+2l′+1) (l = 2l′ + 1)
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(3): PSCB2 has (A,A±2) as an additional axiom. So, we have (A0, (A0)±2) ⇔ (A0, A±2). This
means equivalently to assume Γ2 = {(A0,¬A1)} in PSCB because of (2):PSCB ⊢Γ2 (Am, Am+2l).

2

3 Semantices of PSC

Let us begin to consider the definition of semantices for PSC logic. We interpret LP by using a
classical truth assignment function v : V ARP → {0, 1} where V ARP =

∪
i∈N V ARi. Then

we can easily extend this function v to the domain of all formulas in a language LP . The
assignment for all logical connectives ¬,∧,∨,→ are as usual way, but we will use the truth
transition function δj−i : TV i → TV j to interpret a pair-sentence formula (Ai, Bj) where
TV i = {v(A);A ∈ FORP

i} and FORP
i is a set of all formulas on stage i. The n-th order of

truth transition function δn is defined as follow:

Definition 3.1 (Truth transition function) Let Γ be a finite set of pair-sentence formulas
and v0 ∈ TV 0 an initial truth value of assignment.

(1) δΓ : TV 0 → TV 1 is a truth transition function determined from Γ.

(2) Moreover, the following is a sequence of truth transition functions determined from δΓ :
δΓ

0(v0) = v0
δΓ

n+1(v0) = δΓ(δΓ
n(v0))

where n ≥ 0 is an order of truth transition function.

(3) v0 is n-reflexive with respect to Γ if δΓ
n(v0) = v0 (∃n ∈ N).

(4) δΓ
−1 is a reverse truth transition function of δΓ.

We notice that 1-reflexive assignments are fixed points of δΓ, 2-reflexive ones have 2 as a cycle
number and every initial assignment v0 is 0-reflexive. Then we can easily extend this function
δΓ to the domain of all elements in an Boolean algebra as follows.

Definition 3.2 Let Γ be a finite set of pair-sentence formulas, AP = ⟨AP ,∼,∩,∪,⊃, ( :
), 1, 0⟩ an PSC-algebra and DP a subset of AP .

(1) An assignment of AP is a homomorphism v : LP → AP such that the following hold: for
any A,B ∈ FORP ,

(i) v(Ai) ⇐⇒ (v(A))i (∀i ∈ N)
(ii) v(¬A) ⇐⇒∼ v(A)

(iii) v(A%B) ⇐⇒ v(A)%̇v(B) where % ∈ {∧,∨,→} and %̇ ∈ {∩,∪,⊃}
is an algebraic counterpart of % in order

(iv) v((A,B)) ⇐⇒ (v(A) : v(B))
(v) v(⊤) = 1 and v(⊥) = 0

(2) δΓ : AP
0 → AP

1 is a Boolean transition function determined from Γ, where AP
i is an

Boolean algebra on order i (i = 0, 1).

(3) The ordering of composed elements is the following: for every elements am, bn ∈ AP and
number l ∈ N,
(i) (∼ am)l ⇐⇒∼ am+l

(ii) (am %̇ bn)l ⇐⇒ (am+l %̇ bn+l) where %̇ ∈ {∩,∪,⊃, :}

(4) (i) DP is closed if for every elements am, bn ∈ AP , am ∈ DP and am ⊃ bn ∈ DP

imply bn ∈ DP . (ii) DP is proper if DP ̸= AP . (iii) DP is admissible if for every
assignment v of AP and formula A ∈ TFA⊔ PSA, v(A) ∈ DP . (iv) DP is prime if
for every element am ∈ AP , am ∈ DP or ∼ am ∈ DP . (v) DP is transit if for every
elements am, bn ∈ AP , (am : bn) ∈ DP ⇐⇒ δΓ

n−m(am) = bn. (vi) DP is normal if for
every elements am, bm ∈ AP , (am : bm) ∈ DP ⇐⇒ δΓ

0(am) = bm ⇐⇒ am = bm.
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(5) DP is filter if DP is proper, closed and admissible.

In the above definition, ∼,∩,∪,⊃ are as usual Boolean operators. If we assume a set of
pair-sentence formulas as Γ = {(B0

i1
, B1

j1
), (B0

i2
, B1

j2
), . . . , (B0

in
, B1

jn
)} (∃n ∈ N), then we get the

Boolean transition function δΓ as {δΓ(v(B0
i1

)) = v(B1
j1

), δΓ(v(B0
i2

)) = v(B1
j2

), . . . , δΓ(v(B0
in

)) =

v(B1
jn

)}.

Example 3.3 Let Γ3 be {(A0,¬B1), (B0,¬C1), (C0, A1)}. Then for any A0, B0, C0 ∈ FORP

there exist a0, b0, c0 ∈ AP such that v(A0) = a0, v(B0) = b0, v(C0) = c0 and δΓ3 = {δΓ3(a0) =∼ b1,
δΓ3(b0) =∼ c1, δΓ3(c0) = a1}. Moreover, we get the following sequence of Boolean transition
functions:

δ0Γ3
(a0) = a0

δ1Γ3
(a0) = δΓ3(δ0Γ3

(a0)) = δΓ3(a0) =∼ b1

δ2Γ3
(a0) = δΓ3(δ1Γ3

(a0)) = δΓ3(∼ b1) =∼ δΓ3(b1) =∼∼ c2

δ3Γ3
(a0) = δΓ3(δ2Γ3

(a0)) = δΓ3(∼∼ c2) =∼∼ δΓ3(c2) =∼∼ a3 and so on.

Definition 3.4 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas, A a
formula and AP an PSC-algebra.

(1) MP = ⟨AP ,DP ⟩ is a PSC-matrix if DP is a filter in AP .

(2) Moreover, MP is a PSC-model if DP is a prime (1 ∈ DP and 0 /∈ DP ), transit filter.

(3) A is true in a PSC-model MP under the assumption of X based on Γ, MP , X|=ΓA in
symbol, if for every assigmnent v of AP , v(X ∪ Γ) ⊆ DP implies v(A) ∈ DP .

(4) A is valid under the assumption of X based on Γ, X|=ΓA in symbol, if for every PSC-
model, MP , X|=ΓA.

Lemma 3.5 Let Γ be a finite set of pair-sentence formulas and δΓ : AP
0 → AP

1 a Boolean
transition function determined from Γ, where AP

i is an Boolean algebra on order i (i = 0, 1).
Then we have: ∀am, bn ∈ AP , ∀l ∈ N,

(1) ∼ δΓ
l(am) = δΓ

l(∼ am)

(2) δΓ
l(am %̇ bn) = δΓ

l(am) %̇ δΓ
l(bn) where %̇ ∈ {∩,∪,⊃, :}

(3) δΓ(am) = bn =⇒ δΓ(am+l) = bn+l

Proof. By induction on the order length l of transition function δΓ
l.

(1): Base step: Let l = 0. ∼ δΓ
0(am) =∼ am = δΓ

0(∼ am) by Definition 3.1.
Induction step: Assume that ∼ δΓ

l(am) = δΓ
l(∼ am) holds. Then,

∼ δΓ
l+1(am) =∼ δΓ(δΓ

l(am)) (Definition 3.1)
= δΓ(∼ δΓ

l(am)) (I.H and l=1)
= δΓ(δΓ

l(∼ am)) (I.H)
= δΓ

l+1(∼ am) (Definition 3.1)
(2),(3): We can prove the similar way to (1).

2

Lemma 3.6 For a finite set of pair-sentence formulas Γ, finite sets of formulas X,Y , a formula
A and MP a PSC-matrix, we have the following:

(1) MP , X|=ΓA for every A ∈ X ∪ Γ.

(2) X ⊆ Y and MP , X|=ΓA imply MP , Y |=ΓA.

(3) MP , X|=ΓA if and only if MP , {A;MP , X|=ΓA}|=ΓA.
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Proposition 3.7 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas, A
a formula and MP = ⟨AP ,DP ⟩ a PSC-model. Then PSC, X ⊢Γ A implies MP , X|=ΓA for
every PSC-model MP .

Proof. We prove by induction on the length k of derivation A from X based on Γ in PSC. (i)
Base step: We have to check the two cases. (case 1): A is one of axioms. The classical truth func-
tional axioms TFA are obvious and so we omitted. Assume that v(A0) = a0, v(B0) = b0, v(C0)
= c0, v(D0) = d0, any l,m, n ∈ N and δΓ is a Boolean transition function determined from Γ.
Then, (E1): v((Am, Am)) = (am : am). For every δΓ, δΓ

0(am) = am by Definition 3.1. So
(am : am) ∈ DP . (E2): v((A,B) → (B,A)) = (am : bn) ⊃ (bn : am). Assume (am : bn) ∈ DP

⇔ δΓ
n−m(am) = bn. So, we get δΓ

−(n−m)(δΓ
n−m(am)) = δΓ

−(n−m)(bn) ⇔ δΓ
0(am) = δΓ

m−n(bn)
⇔ δΓ

m−n(bn) = am ⇔ (bn : am) ∈ DP . (E3): v((A,B) ∧ (B,C) → (A,C)) = (al : bm) ∩ (bm :
cn) ⊃ (al : cn). Assume (al : bm) ∩ (bm : cn) ∈ DP ⇔ (δΓ

m−l(al) = bm) ∩ (δΓ
n−m(bm) = cn).

Then we get δΓ
m−l(al) = bm ⇒ δΓ

n−m(δΓ
m−l(al)) = δΓ

n−m(bm) = cn ⇔ δΓ
n−l(al) = cn. (C1):

v((A,B) → (¬A,¬B)) = (am : bn) ⊃ (∼ am :∼ bn). Assume (am : bn) ∈ DP ⇔ δΓ
n−m(am) = bn.

Then we get δΓ
n−m(am) = bn ⇒∼ δΓ

n−m(am) =∼ bn ⇔ δΓ
n−m(∼ am) =∼ bn by Lemma 3.5

(1). Hence (∼ am :∼ bn) ∈ DP . (C2)-(C5): By Lemma 3.5 (2). (P1) : v((A,B) → (A → B)) =
(am : bn) ⊃ (am ⊃ bn). Assume (am : bn) ∈ DP ⇔ δΓ

n−m(am) = bn. So, we get am ⊃ bn by
using a transition function δΓ

n−m. (P2): By Lemma 3.5 (3). (P3): If A has only a unit of pair-
sentence formula, then we have (a0 : a0) ∈ DP and (al : al) ∈ DP for any l ∈ N by (P2). So,
there exists an identity tansition function id such that id(am) = an for every m,n ∈ N. (case
2): A is one of X ∪ Γ. It is obvious from Lemma 3.6 (1). (ii) Induction step: We have to check
the three cases. But the first two cases are similar to the base step. (case 3): A is a result of

derivation from A
ig
g and Aih

h where g, h ≤ k. Then A
ig
g is Aih

h → A or (Aih
h , A). We have the two

derivations:
(Aih

h , A) (Aih
h , A) → (Aih

h → A)

Aih
h → A

and
Aih

h → A Aih
h

A . Because of g, h ≤ k, we can

apply the induction hypothesis to A
ig
g and Aih

h . Hence we have v(Aih
h → A) = aihh ⊃ am ∈ DP

or v((Aih
h , A)) = (aihh : am) ∈ DP , and v(Aih

h ) = aihh ∈ DP . Moreover, (aihh : am) ∈ DP implies

aihh ⊃ am ∈ DP by (P1). So, both aihh ⊃ am ∈ DP and aihh ∈ DP imply am ∈ DP .
2

Definition 3.8 Let MP = ⟨AP ,DP ⟩ and MP
′ = ⟨AP

′,DP
′⟩ be PSC-matrices. Then a func-

tion h : AP 7→ AP
′ is a matrix homomorphism from MP into MP

′ if h is an algebraic isomor-
phism from AP into AP

′ and h−1(DP
′) = DP .

Proposition 3.9 Let Γ be a finite set of pair-sentence formulas and X a finite set of formulas.
If h is a matrix homomorphism from MP into MP

′, and which maps AP onto AP
′, then

MP , X|=ΓA if and only if MP
′, X|=ΓA.

Definition 3.10 Let MP = ⟨AP ,DP ⟩ be a PSC-matrix. Then we define the following:
∀am, bn ∈ AP ,

(1) ≈ is a binary relation on AP such that am ≈ bn ⇔ (am : bn) ∈ DP .

(2) |am| is the congruence class of element am, i.e., |am| = {bn; am ≈ bn}.

(3) AP /≈ is the set of congruence classes of elements of AP , i.e.,
AP /≈ = {|am|; am ∈ AP }.

(4) AP /≈ = ⟨AP /≈,∼,∩,∪,⊃, ( : ), |1|, |0|⟩ is an PSC-algebra with the following defini-
tions: for every |am|, |bn| ∈ AP /≈,
(i) ∼ |am| ⇐⇒ | ∼ am|

(ii) |am| %̇ |bn| ⇐⇒ |am %̇ bn| where %̇ ∈ {∩,∪,⊃, :}
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Proposition 3.11 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas,
A a formula and MP = ⟨AP ,DP ⟩ a PSC-matrix. Then we have the following:

(1) DP /≈ is a filter in AP /≈. So, MP /≈ = ⟨AP /≈,DP /≈⟩ is a PSC-matrix.

(2) Moreover, DP /≈ is a transit filter in AP /≈.

(3) DP /≈ is prime if and only if DP is prime in AP .

(4) The mapping am 7→ |am| is a matrix homomorphism from MP onto
MP /≈. So, MP , X|=ΓA if and only if MP /≈, X|=ΓA.

Proof. (1): DP /≈ = AP /≈ implies DP = AP . Hence DP ̸= AP ⇒ DP /≈ ̸= AP /≈. So,
if DP is proper, then DP /≈ is also proper. Since DP is closed, am, am ⊃ bn ∈ DP implies
bn ∈ DP . So, |am|, |am ⊃ bn| ∈ DP /≈ implies |bn| ∈ DP /≈. Here |am ⊃ bn| ⇔ |am| ⊃ |bn| by
Definition 3.10 (4). So, DP /≈ is also closed. Since DP is admissible, for every axiom A in
TFA ⊔ PSA and every assignment v of AP , v(A) ∈ DP . So, we get |v(A)| ∈ DP /≈ by Def-
inition 3.10 (4). Hence DP /≈ is also admissible. (2): For every |am|, |bn| ∈ AP /≈ and every
Boolean transition function δΓ : AP

0 → AP
1 determined from Γ, there exists δ̇Γ : AP

0/≈ →
AP

1/≈ such that (|am| : |bn|) ∈ DP /≈ ⇐⇒ δ̇Γ
n−m

(|am|) = |bn| ⇐⇒ δ̇Γ
n−m

({ai11 , ai22 , . . .}) =

{bi1+(n−m)
1 , b

i2+(n−m)
2 , . . .}, where δΓ

n−m(ai11 ) = b
i1+(n−m)
1 , δΓ

n−m(ai22 ) = b
i2+(n−m)
2 , . . . hold. So,

DP /≈ is transit. (3): Assume DP is prime, i.e., for every am ∈ AP , am ∈ DP or ∼ am ∈ DP .
So, |am| ∈ DP /≈ or | ∼ am| ∈ DP /≈ ⇔∼ |am| ∈ DP /≈. Hence DP /≈ is also prime. The
converse direction is also similar. (4): For every am, bn ∈ AP , am ̸≈ bn, i.e., δΓ

n−m(am) ̸= bn

implies |am| ̸= |bn|. Also for every b ∈ AP /≈ there exists am ∈ AP such that |am| = b. So, the
mapping am 7→ |am| is both 1-1 and onto. Hence we get the result by Proposition 3.9.

2

Theorem 3.12 (Completeness) Let Γ be a finite set of pair-sentence formulas, X a finite
set of formulas, A a formula and MP = ⟨AP ,DP ⟩ a PSC-model.

(1) X is consistent if and only if there exists a model MP and an assignment v of AP such
that X ⊆ v−1(DP ).

(2) PSC, X ⊢Γ A if and only if for every PSC-model MP , MP , X|=ΓA.

(3) PSC ⊢Γ A if and only if for every PSC-model MP , MP |=ΓA.

(4) PSC ⊢∅ A if and only if for every PSC-model MP , MP |=∅A.

Proof. (1): Assume X is consistent. Then there exists a complete set Y such that X ⊆ Y
and Y = {A;PSC, Y ⊢Γ A} by Proposition 2.11 (2). Since Y is proper, closed and admissible,
M = ⟨LP , Y ⟩ is a PSC-matrix. Hence there exists a assignment v : LP 7→ AP such that v is
a matrix homomorphism from M into MP and both 1-1 and onto. So, we get X ⊆ v−1(DP )
by Definition 3.8. (2): ⇒) : Proposition 3.7. ⇐) : Assume PSC, X ̸⊢Γ A. Then there exists
a complete set Y such that X ⊆ Y = {A;PSC, Y ⊢Γ A} and A ̸∈ Y by Proposition 2.11 (4).
Here for every Am, Bn ∈ FORP , we define a binary relation ∼ on AP as follows: Am ∼ Bn

⇐⇒ (Am, Bn) ∈ Y . Then M/∼ = ⟨LP /∼, Y/∼⟩ is a Lindenbaum-Tarski quotient model and
M ≃ M/∼ holds. For every assignment v : LP 7→ AP , we have M ≃ MP and M/∼ ≃ MP /≈.
So, we have:
PSC, X ̸⊢Γ A =⇒ A ̸∈ Y (Proposition 2.11 (4))

⇐⇒ PSC, Y ̸⊢Γ A (Y = {A;PSC, Y ⊢Γ A})
⇐⇒ M, Y ̸|=ΓA (1)
⇐⇒ M/∼, Y ̸|=ΓA (M ≃ M/∼)
⇐⇒ MP /≈, Y ̸|=ΓA (M/∼ ≃ MP /≈)
⇐⇒ MP , Y ̸|=ΓA (MP ≃ MP /≈)
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⇐⇒ MP , X ̸|=ΓA (X ⊆ Y )
Hence the reverse direction also holds. (3): Restrict to X = ∅ in the previous result. (4):
Similarly, restrict to both X = ∅ and Γ = ∅.

2

4 Conclusion

In this paper we proposed a system that allows to deal with paradoxical sentences, like a
Liar sentence: “A is not A”, and presented both an axiomatic system PSC and an ade-
quate PSC-matrix semantics for it. Our calculus has a pair-sentence (Ai, Bj) (∃i, j ∈ N)
form to show the referential relation between two situations of sentence A on stage i and
sentence B on stage j. The referential relation is similar to identity in SCI, but more gen-
eral notion just as a mutual link relation between two sentences, so even that can be es-
tablished between contradict sentences. If we restrict each stage number as 0 ∈ N in PSC,
then a pair-sentence form (A0, B0) is equivalent to an identity equation A0 ≡ B0 in SCI. In
this sence, the PSC is a conservative extension of SCI. In PSC-matrix semantics, a pair-
sentence (Ai, Bj) form can be interpreted as δΓ

j−i(ai) = bj using some Boolean transition
function δΓ determined from Γ. So, if we restrict each stage number as 0 ∈ N, then we get
δΓ

0(a0) = a0 = b0 as a semantical interpretation, which is identical to a PSC-matrix with nor-
mal filter, just same as an adequate semantics of SCI system. Now we consider the transition
behaviour of three sets of pair-sentence formulas in Example 2.2, i.e., (1) Γ1 = {(A0, A1)}, (2)
Γ2 = {(A0,¬A1)} and (3) Γ3 = {(A0,¬B1), (B0,¬C1), (C0, A1)}. (1): For every assignment v

v1 v2 v3 v4 v5 v6 v7 v8

(3)
δΓ3

Γ3

v1 v2

(1)
δΓ1

Γ1

v1 v2

(2)
δΓ2

Γ2

Figure 1: Boolean transition figures of δΓi (i ∈ {1, 2, 3})

of AP , let v1 = v(A) = a and v2 = v(¬A) =∼ a. Then the behaviour of a Boolean transition
function δΓ1(a0) = a1 shows the mapping of v1 7→ v1 and v2 7→ v2 at each transition. So, the as-
signment of senetnce A keeps constantly the same value among on each stage. Similarly, (2): the
behaviour of δΓ2(a0) =∼ a1 shows the crossed mapping of v1 7→ v2 and v2 7→ v1 at each transi-
tion. So, the assignment of sentence A returns to an initial value at every after two transitions.
(3): let vi = v(A) × v(B) × v(C) such that v1 = ⟨a, b, c⟩, v2 = ⟨a, b,∼ c⟩, v3 = ⟨a,∼ b, c⟩, v4 =
⟨a,∼ b,∼ c⟩, v5 = ⟨∼ a, b, c⟩, v6 = ⟨∼ a, b,∼ c⟩, v7 = ⟨∼ a,∼ b, c⟩ and v8 = ⟨∼ a,∼ b,∼ c⟩. Then
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the behaviour of δΓ3 shows the constant mapping on v3, v6 and three cyclic mapping on others.
Moreover, we can consider more complicated set of pair-sentence formulas like Γ4 = {(A0, A1),
(B0, C1), (C0, ((¬A ∧ ¬B ∧ C) ∨ (A ∧ ¬B))1)}. In this case the behaviour of δΓ4

shows that if
v(A) = 1, then four cyclic mapping on v1, v2, v3, v4 and otherwise, any transitions start from
v5, v6, v7, v8 finally converge on the constant mapping on v8.
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