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Abstract
In this paper, we introduce a mathematical model of plant growth, from the seedling to shipping of the
adult plant. Our model has three parts. The first analyzes plant growth, the second models the fertilizer
supply system, and the third identifies an optimal control strategy by matching the control system to the
growth density. The mathematical model was defined using bilinear partial differential equations, but
these were replaced by a strictly linear model.
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1 Introduction

Previous studies have attempted to develop a mathematical model of plant leaf growth[1, 2]. In particular,
attention has focused on the relationship between growth and light intensity. In the field of physiological
ecology,“growth analysis”involves several different measures, including the relative growth rate (RGR)
and leaf area ratio (LAR). In a series of classical studies, Blackman et al. investigated the relationship
between light intensity and plant growth and established relationships between the net assimilation rate
(NAR), LAR, and RGR, and light intensity[3]. The essence of growth analysis is to understand the
factors that produce differences in growth rates. Many factors cause the differences and identifying
the exact factor that has caused the difference in each individual case is challenging. Factors such as
photosynthesis and respiration are often analyzed, but these may not necessarily be the main causes
of the differences. Bottom-up approaches examine each factor, one at a time, to clarify the role each
plays in the growth rate. Growth analysis, in contrast, is a top-down method in which the growth rate is
factorized. Growth rate analysis is rather a mathematical problem, but it is also an easy-to-understand
theoretical framework that intuitively understands how plants grow.

In this paper, we report our mathematical modeling of the growth process, from seedling to shipping.
Our proposed model has three parts. The first models the growth period (model 1), the second models the
fertilizer supply system (model 2), and the third yields an optimal control strategy, in which the growth
density is replaced by a control system. When plants are cultivated under LED lamps, the optimal input
control uses a bang?bang-type feedback control in each time period. By controlling the optical power
during the growth stage in the growth cycle, the harvest can be maximized. A rigorous linearization
model is needed in such growth models.

2 Physical model of plant growth

2.1 Leaf growth

Figure 1 shows the processes by which plants absorb nutrients and trap energy from sunlight. Figure 2
shows the growth process from seedling to shipping. The labels 1, 2, and 3 denote the inputs at seeding,
the seedling growth period, and shipping of growing plants, respectively.

Kleiber s̓ law describes the growth of animals and plants based on the observation that there is a
scaling relationship between the size of a body or organ and its structure or function[5]:

E = k ·Mb (2.1)

where, k denotes a proportionality constant and b denotes a small plants as b= 1, a large plant as b= 3/4.

1Information and Culture Faculty
2Kyohnan Elecs co.,LTD

－ 46 －



This relationship has been established for single-celled organisms, thermo-controlled animals, and
homeothermic animals, with the only difference being the value of the proportionality constant k. Clearly,
it also applies to the human metabolism. In the case of photosynthesizing plants, the relationship between
mass, unit density, and leaf area is given as follows:

ρ ×Vs = Ms (2.2)

ρ ≃ Ms(≡ F) (2.3)

where, ρ , Vs, Ms and F denote a unit density, volume, a mass and a leaf area respectively, that is, the
dynamic model of plant unit density is as follows.

∂ρ(t,x)
∂ t

+
∂
∂x

(v(t,x)ρ(t,x)) = σ(t,x) (2.4)

where, σ(t,x) denotes a mass increase rate.
Equations (2.2) - (2.4) denote a physical model of plant growth. Therefore, we try to replace this

model with an engineering model.

2.2 Engineering model of plant growth

Figure 1 shows that the plant maintains physical equilibrium by absorbing nutrients and growing. We
define the equilibrium of the potential is as follows:

Definition 2.1 Equilibrium of the potential

k
′
[ϕNu −ϕWa ] = Pσ (2.5)

where, ϕWa , ϕNu , Pσ and k
′

denote a transpiration potential, a nutrient absorption potential, a growth
potential and a growth coefficient respectively. ϕWa , ϕNu and Pσ are derived as follows[2]:

ϕWa =−
∫ xb

∞
f (t,x,a)dx (2.6)

ϕNu =
∫ xa

∞
Kcom(t,x)dx (2.7)

Pσ = k
′
[ϕNu −ϕWa ] (2.8)

where, f (t,x,a) and Kcom(t,x) denote a growth function and an energy absorption function respectively.
ξ (t,x) and θb(t,x) denotes the energy release and nutrient absorption respectively in Figure 5. The

energy release between ∆x is derived as follows:

∆Q =Cf ×Pf ×S f ∆ξ ∆x (2.9)

Nutrient absorption between ∆x is derived as follows:

∆Q = Kp ·Pf ·Ps(θb(t,x)−ξ (t,x))∆t (2.10)

From Equations (2.9) and (2.10), let ∆t → 0, then we obtain as follows:

Cf ×Pf ×S f
dξ
dt

=
αA
L

Kp ·Pf ·Ps(θb −ξ ) (2.11)

where, α , A and L denote a fertilizer efficiency conversion coefficient, an effective reaction area between
fertilizer stirring tank and growing machine and a length of cultivator respectively. Therefore, we obtain
as follows[8]:

∂ξ
∂ t

+ v
∂ξ
∂x

=
dξ
dt

=
KpPsαA

Cf ·S f ·L
(θb(t,x)−ξ (t,x)) (2.12)
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We obtain the following equation by modifing Equation (2.12):

∂ξ
∂ t

+ v
∂ξ
∂x

=
P(t)αA

L
(θb(t,x)−ξ (t,x))≡W (t)(θb(t,x)−ξ (t,x)) (2.13)

where, P(t) is replaced as follows:

P(t) �
Kp ·Pf ·Ps

Cf ·S f
(2.14)

W (t)≡ P(t)αA
L

(2.15)

where, Kp, Pf , Ps, S f and Cf denote an energy conversion coefficient, LED power density, a radiation
area, a nutrient supply coefficient and a transmission efficiency respectively.

Figure 1: Leaf growth
Figure 2: Growth process from seedling to shipping

3 Leaf growth period model of plant

Leaf growth period model of plant is derived as follows:

∂ξ (t,τ)
∂ t

+ρ(t)
∂ξ (t,τ)

∂τ
−D

∂ 2ξ (t,τ)
∂τ2 =W (t)

{
Kcom(t)− kv(t)ξ (t,τ)

}
(3.1)

where, t ∈ (0,T ), τ ∈ (0,L), Kcom(t)−kv(t)ξ (t,τ) denotes the exchange with fertilizer and W (t) denotes
the power by optical input.

ξ (t,0) = ξ 0(t) (3.2)

ξ (0,τ) = ξv(τ) (3.3)
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Figure 3: Growth period model







Figure 4: Plant cultivation model

Figure 5: Energy release and nutrient absorption
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Table 1: Physical meaning of each symbol

P Supply of water and fertilizer
θ0 Internal retention amount
θb Supply amount of cultivator
θξ Return amount of cultivator
Lh Pipe length
Vb Tank capacity
Vh Cultivation capacity
S Piping cross section
q Quantity of flow
c Viscosity in piping

ξ (t,x) Plant cultivation machine

where, Equations (3.2) and (3.3) denote the initial input (boundary condition) and the initial distribution
(initial condition) respectively.

The relative growth rate (RGR) between times t1 and t2, the net assimilation rate (NAR: net assimi-
lation rate ) and leaf area ratio (LAR: leaf area ratio) can be drived as follows[3]:

RGR =
1
w
· dw

dt
≈ lnw2 − lnw1

t1 − t2
(3.4)

NAR =
1
u
· dw

dt
≈ lnu2 − lnu1

u1 −u2
(3.5)

LAR =
u
w
≈ lnw2 − lnw1

w2 −w1
(3.6)

Here w1 and u1 are the average individual weights at times t1 and w2, respectively, and u2 is the average
leaf area at time t2. When calculating the NAR using Equation (3.5), the increase in leaf area (u) is not
proportional to the weight (w) in the period from t1 to t2, and this produces a large error [4]. The RGR is
therefore derived as follows[1]:

< RGR >=
1

W
dW
dt

=
d(lnW )

dt
[week−1] (3.7)

The Equation (3.7) is transformed as follows[2]:

< RGR >=< NAR > ·< LAR >=
[ 1

A
dW
dt

]
×
[ A

W

]
(3.8)

where, W and A denote a solid dry weight and a leaf dry weight respectively.
In mathematical terms, the growth of plants is an affine coupling between photosynthesis and plant

form. The change in weight (growth) is a nonlinear combination of the optical power (which determines
the photosynthetic capacity) and nutrient absorption. The latter reflects the nutrient potential, which de-
pends on the morphology of the plant and the transpiration potential of the leaves. This can be expressed
in strictly linearized terms as follows:

∂S(t,τ)
∂ t

= h[Kcom(t),kv(t),S(t,τ)]+ f (t,τ) (3.9)

where, h[Kcom(t),kv(t),S(t,τ)] and f (t,τ) denote the nutrient absorption function and a discrete input
such as

f (t,τ) = ∑
j

φ j(τ) f j(t) (3.10)
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In the case of plant cultivation, let τ ≡ x. Then, τ can be considered as same as a spatial movement
direction x. Therefore, Equation (3.9) can be replaced as follows:

∂S(t,x)
∂ t

= h[Kcom(t),kv(t),S(t,x)]+ f (t,x) (3.11)

f (t,x) = ∑
j

φ j(x) f j(t)

4 Plant cultivation model

In Figure 4, the fertilizer supply tank model can be expressed as follows:

(Vb +LbS)ρc
dθb

dt
= {−θb +θξ (t,L)}qρc+(θ0 −θc)κ0vbρc+P (4.1)

We describe Equation (4.1) for simplicity as follows:

dθb

dt
= h[θb(t)]+ k1m(t) (4.2)

k1m(t)≡ (θ0 −θc(t))κ0v0ρc
′
+P

where, t ≥ 0.
On the other hand, the plant cultivation model is derived as follows:

∂ξ (t,x)
∂ t

+q(t)
∂S(t,x)

∂x
=W (t)

{ κ0

Kcom
θb(t)−

κ1

(Vb +LbS)ρ
ξ (t,x)

}
+

1
Kcom

{κ0θb(t)−Aξ (t,x)} (4.3)

where, A and ρ denote a cultivator area and a plant unit density respectively. κ0 and κ1 denote a growth
coefficient. Kcom denotes a fertilizer reaction coefficient.

Equation (4.3) can be replaced for simplicity as follows:

∂ξ (t,x)
∂ t

+q(t)
∂S(t,x)

∂x
= KcomW (t)[θb(t)−ξ (t,x)] (4.4)

where, t ∈ (0,T ), x ∈ (0,L) and Kcom ≡ {Vh,Lh,S,ρ ,κ0,A}.
Since Equation (4.4) is the bilinear partial differential equation, the solution is found as follows[6, 7]:

ξ (t,x) = exp
(
−
∫ t

0
KcomW (σ)dσ

)
×
{

ξ
(

0,x−
∫ t

0
q(σ)dσ

)}

+
∫ t

0
KcomW (σ)θb(σ)× exp

(∫ σ

0
KcomW (σ)dσ

)
dσ

}
(4.5)

Then, Equation (4.5) can be modified as follows:

∂ξ (t,x)
∂ t

=−q(t)
[KcomW (t)

q0

(
θb(t)−ξh0(x)

���
x=L−

∫ t
0 q(σ)dσ

)]
(4.6)

where, ξh0(x) is the solution of the following equation.

q0
∂ξh0(x)

∂x
= KcomW (t)

[
θb(t)−ξ (t,x)

]
(4.7)

Equation (4.7) represents the steady growth characteristic. Moreover, Equation (4.7) can be modified as
follows:

∂ξ (t,x)
∂ t

= KcomW (t)
[q(t)

q0

{
ξh0

(
L−

∫ t

0
q(σ)dσ

)
θb(t)

}
−ξ (t,L)

]
(4.8)
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Therefore, Equation (4.8) at x = L is derived as follows:

∂ξ (t,x)
∂ t

= KcomW (t)
{

κ̂0(t)θb(t)−ξ (t,L)
}

(4.9)

where, κ̂0(t) is derived as follows:

κ̂0(t)≡
{q(t)

q0
ξh0

(
L−

∫ t

0
q(σ)dσ

)}
(4.10)

where, κ̂0(t)θb(t) denotes the supply amount of fertilizer synchronized with steady growth.
Here, we assume κ̂0(t)θb(t) to a constant as follows:

Assumption 4.1

κ̂0(t)θb(t)≡ κ̂0θb (4.11)

Therefore, we obtain as follows:

∂ξ (t,x)
∂ t

= KcomW (t)
{

κ̂0θb −ξ (t,L)
}

(4.12)

Let KcomW (t), which is a forcing term, be a constant (stationary irradiation) for simplicity. Then, Equa-
tion (4.12) is modified as follows:

∂ξL(t)
∂ t

= θW

{
κ̂0θb −ξL(t)

}
(4.13)

where, ξ (t,L)≡ ξL(t) and θW ≡ KcomW (t).
Assuming that the growth rate is stochasitc due to surrounding influences, the following equation can

be derived as follows:

dξL(t) = θW

(
κ̂0θb −ξL(t)

)
dt +σdZ(t) (4.14)

where, Z(t) denotes a Wiener process.

5 Optimal control of general bilinear distributed parameter system

The mathematical model of the first order bilinear distributed parameter system is given as follows:

∂S
∂ t

= f0(t,x,S)+ fα(t,x,S)Wα(t)+ fk
∂S
∂x

(5.1)

where, (t,x) ∈ [t0, t f ]×Ω.
The initial and boundary conditions are as follows[6, 8]:

S(t0,x) = S0(x) (5.2)

S(t,x)|x∈∂Ω = Sb(t) (5.3)

where, S0(x) and Sb(t) denote each smooth function at x ∈ Ω and (t,x) ∈ [t0, t f ].
We define the evaluation function J to obtain the control function by the gradient method.

Definition 5.1

J =
∫ t f

t0
G(t,x,S(t,x)),u(t))

���
x∈Ω

dt (5.4)
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where, let G(t,x,S(t,x)),u(t)) be as follows:

G(t,x,S(t,x)),u(t)) = g(t,x,S)+gα(t,x,S)u (5.5)

We formulate the gradient function using the maximum principle of Pontriyagin[7].

Definition 5.2 Gradient function K

K(t,x,S,Sx,P,Wα) = P{ f0(t,x,S)+ fα(t,x,S)Wα + fk(t,x,S)Sk} (5.6)

where, (t,x) ∈ [t0, t f ]×D and Sx =
∂S
∂x .

P in Equation (5.6) is defined as follows:

Definition 5.3 Function P

∂P(t,x)
∂ t

=−∂K(t,x,S,Sx,P,Wα)

∂S
+

∂
∂x

[∂K(t,x,S,Sx,P,Wα)

∂S

]
(5.7)

where, P(t f ,x) = 0, ∂P
∂x

���
x∈∂D2

= 0 and ∂D = ∂D1 +∂D2.

Then, Hamiltonian H is defined as follows:

Definition 5.4 Hamiltonian H

H =−G
���
x∈∂D2

+
∫

D
Kdx (5.8)

The necessary condition for being the optimum operation amount W̄α is as follows.

H(t,x, S̄, S̄x, P̄,W̄α) = max
Wα∈Ω

H(t,x, S̄, S̄x, P̄,W̄α) (5.9)

where, t ∈ [t0, t f ].
Then, the gradient function hW as defined as follows:

Definition 5.5

hW =
∂H

∂Wα
=−gα(t,x)

���
x∈∂D2

+
∫

D
P(t,x) fα(t,x,S)dx (5.10)

where, t ∈ [t1, t2]⊂ [t0, t f ]

The optimal control function can be obtained from the gradient method using Equation (5.10).
As described above, in the case of cultivating plants by light power input by LED, it is understood

that the optimal input for obtaining the desired harvest amount is the Bang-Bang control per period time
t ∈ [0,T ], TR ≤ T . That is, by applying the optical power adapted to the period cycle according to the
above-described control strategy, a desired harvest can be obtained in the final period.

6 Optimal control law by strict linear model approximation

We find the optimal solution using the strict linear model to make the bilinear partial differential equa-
tions easier to handle. We rewrite the leaf growth period model of plant as follows:

∂ξ (t,x)
∂ t

=W (t)
{

k0θb(t)− k1ξ (t,x)
}

(6.1)
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Figure 6: Optimal and Singular control Figure 7: Continuum approximation

Equation (6.1) is derived at x = L as follows:

dξL(t)
dt

=
Ŵ (t)A

L(c f ρ f S f )

{
k0θb(t)− k1ξL(t)

}
=

1
L(c f ρ f S f )

{
ξ0(t)− k1ξ1(t)

}
(6.2)

Equation (6.2) is transformed as follows:

dξL(t)
dt

=W (t,L)
{

k0θb(t)− k1ξL(t)
}
+ f [ξL(t)] =W (t,L)g{ξL(t)}+ f [ξL(t)] (6.3)

where, the functions W (t,L), g{ξL(t)} and f{ξL(t)} in Equation (6.3) as follows[6, 7]:

W (t,L)≡ Ŵ (t)A
L(c f ρ f S f )

= w(t) (6.4)

g{ξL(t)}= k0θb(t)− k1ξL(t) (6.5)

f{ξL(t) =
1

L(c f ρ f S f )

{
ξ0(t)− k1ξ1(t)

}
(6.6)

From Equations (6.3) − (6.6), we obtain as follows:

dCL(t)
dt

= mCL(t)+bu(t) (6.7)
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where, CL(t), m, b, w(t) and Ŵ (t) are as follows:

CL(t)≡ k1ξL(t)− k0θb(t) (6.8)

m =
1

L(c f ρ f S f )
+

A
L(c f ρ f S f )2 (6.9)

b ≡ 1
L(c f ρ f S f )

(6.10)

w(t)≡ 1
ξ0(t)− k1ξL(t)

{ 1
L(c f ρ f S f )

{ξ0(t)− k1ξL(t)}+u(t)
}
× A
(c f ρ f S f )

(6.11)

Ŵ (t)≡ kpPp(t)Ps ·α (6.12)

where, ξL(t) satisfy the following equation.

dξL(t)
dt

=
Ŵ (t)A

L(c f ρ f S f )

{
k0θb(t)− k1ξL(t)

}
+

1
L(c f ρ f S f )

{
ξ0(t)− k1ξL(t)

}
(6.13)

From above description, we obtain as follows:

dCL(t)
dt

= mCL(t)+bu(t) (6.14)

Equation (6.14) denotes the exact linear model exchanged. Then, the optimal input is derived as follow:

uopt(t) =−kC(t) (6.15)

When the optimal input uopt(t) is applied, we obtain as follows:

dCLopt (t)
dt

= (m− k)CLopt (t) (6.16)

Therefore, due to the optimal input uopt(t) for the mathematical model of plant Leaf area growth , the
mathematical model is represented by the equation (6.16).

7 Results

In this paper, mathematical modeling was applied to plant growth, from the seedling to the shipment of
the adult plant. We observed that it was theoretically possible to derive an optimal control method by
starting with bilinear partial differential equations in the growth period and developing a rigorous linear
model. In future work, we will apply the model to real data, to test the accuracy of the model.
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