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Abstract

In this paper, we design a control system configuration in a drying oven using the mathematical 

model of the status in the drying oven and describe it using a transfer function with a quadratic 

time delay. The transfer function is called a vapor pressure function and has main state variables 

in a drying oven.

From a mathematical point of view, a one-dimensional advection diffusion equation (ODAE), for 

which the object model has a constant speed v in the direction, defines the drying oven status of 

the target system. The ODAE is given by applying the Lagrange differential operator. For example, 

it is possible to determine the optimal heat source position or the distribution function under 

ODAE.

It is generally difficult to measure the real data in the state variables within the drying oven. 

However, it is possible to determine the real data using various estimation algorithms such as 

Kalman filter theory and also to determine the configuration of a control system.

Keyword: thermal diffusion, Laplace transform, drying oven, impregnating solvent

1 Introduction

 In general, a machine produces sheet type films. Its function is to first impregnate a solvent, 

especially an organic solvent, into the films, and then control the thickness of the impregnated 

film using a heat source in the drying oven. Such a machine is called ”impregnating machine,” and 

it produces shaped insulator films. Some companies have developed various types of machines 

that process many films using various solvents in a conventional manner. As a result, many 

different types of films have been produced.

 In previous studies related to impregnating machines, it is widely recognized that the 

impregnated solvent on sheet-type films gets dried while diffusing the heat in a drying oven, or 

the sheet-type films may themselves move during the process of receiving heat in the form of 

steam in the drying oven[1, 2]. It is considered that the most important process units of the 

impregnating machine are the impregnating solvent and the drying unit.

 Horiuchi et al. proposed a drying simulator which calculates the state variables that are 
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related to the drying condition on impregnated films using the thermal diffusion in the drying 

oven[3]. In the case of this simulator, its function provides the data regarding these state variables 

using numerical analysis for one-dimensional partial differential equations (PDE) with unsteady 

states under both boundary conditions and process conditions. This excellent simulator is widely 

used in many studies as a drying mathematical model.

 This paper proposes that the main state variables are given by an internal vapor pressure 

function to realize the design of a control system configuration. From the above description, the 

mathematical method uses a transfer function with a second-order time delay model as a more 

specific heat diffusion function in the drying oven. This paper also provides a mathematical model 

in which the impregnated films move with a velocity “ v ” in a certain direction. The ordinary 

differential equation is given by the Lagrange Differential Operator (LDO). This paper reports that 

the state of thermal diffusion to be discussed is defined by the ODAE[8].

 First, this paper explains that the mathematical model is described using a transfer function 

with a second-order time delay model in which the object to be dried is stationary in the drying 

oven[7].

 After obtaining the ODAE using Laplace transforms, the mathematical model of the thermal 

diffusion state equation is derived by LDO. Here, LDO is provided by the independent time 

variable t and dependent special variable x.

 With respect to the direction of motion, assuming that the movement of films is in a 

onedimensional direction and that the impregnating solvent on the films is also dried in a one-

dimensional direction by thermal diffusion, the model in a drying oven that describes the 

impregnated solvent on the films as a diffused continuous object in the direction of motion is 

presented by ODAE.

 Instead of focusing on the internal reaction when impregnating films, we are to design a 

dynamic state model on a control system. To do this, it is necessary to derive the mathematical 

model that describes the situation in which the solvent vapor is diffused by the vapor pressure 

unit.

 Further, with such a model, for example, it is also possible to determine the optimal heat 

source position or the distribution function. The measurement of the real state quantities is 

generally difficult. However, it allows the configuration of a control system when used to estimate 

the state variables using estimation tools[8].

 As described above, the method proposed in this paper provides an easy mathematical 

model in ODEA.

2 Basic mathematical model and definition of the physical quantities

 With respect to a model that remains stationary for both the films and heat source in the 

drying oven shown in Fig.1, the physical quantities used in this section are described as follows[3, 

4, 6].
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 Assuming that the vapor pressure is derived using the function of the moisture q(t) in a 

drying oven, the vapor pressure is derived by

 (2.1)

where, the moisture function q(t) is defined as the following equation:

Definition 1 Moisture function q(t)

 (2.2)

where r(t) is the ratio of drying, r(t) ＝ g2[Pi(t)－P0(t)], Pi(t) is the vapor pressure in the drying 

oven, and P0(t) is the external vapor pressure.

 The vapor pressure derived by the gradient on the average moisture mv(t) on the films in 

the drying oven, is defined by

Definition 2 Gradient on the average moisture mv(t) on the films

 (2.3)

where, mv(t) is derived by

 (2.4)

where hi(t) is the amount of heat transfer and h0(t) is the heat consumption. Now, hi(t) is described 

by

Fig.1:  Static model in the drying oven Fig.2:  Oven standard model
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 (2.5)

where, H is the function representing a physical constraint.

　gk(•), k ＝ 1,2,3,4 in Eqs.(2.1)-(2.5) represents the constraint function on the each physical

quantity.

In this case, the transfer function W(s) in such a drying oven is derived by

 (2.6)

where Q(s) is the Laplace transform of the moisture spring from the solvent obtained using the 

heat source in the dryin g oven, and M(s) is the Laplace transform of the heat source function (the 

temperature in drying oven).

 Such a thermal system model is generally derived as the time delay with a second-order 

system:

 (2.7)

where, let KG，a1，a2，a3 be a positive real number respectively.

 From Eqs. (2.6)-(2.7), the following ODE is obtained formally by

 (2.8)

where, the initial condition is q(0) ＝ q0[7].

　The state variables on the object are considered as follows.

This is a mathematical model for which the films with the impregnated solvent represent the 

upper layer condition dried by the heat source under certain conditions (See Fig.2).

 Since the moisture is approximately equal to the vapor pressure, we let the vapor pressure 

function be C(x, t).

 In addition, from Eq.(2.6), let the heat source (the temperature in the drying oven) again be 

f (t). Then, W(s) is derived by

 (2.9)

　The model of Eq.(2.9) shows that the thickness of the impregnated solvent on films is 

proportional to the value of the moisture vapor pressure function based on time. In the case of a 

constraint condition such as heating the impregnating solvents, the thickness of the impregnated 

solvent on films decreases. However, the thickness of the films themselves maintains a constant 

value.

 To mathematically model the continuous films, we assume that the films move with velocity 
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v in the direction.

 To describe the mathematical model, the Lagrange differential operator D/Dt is introduced 

by

 (2.10)

where x denotes the spatial variable in the direction of movement[8].

 From Eq.(2.8), Eq.(2.10) can be rewritten by

 (2.11)

Similarly, Eq.(2.9) is derived by

 (2.12)

 For the state variable below, it is assumed that Eq. (2.12), which is described by the internal 

vapor pressure function C(x, t) is the target model system.

　From Eqs.(2.10), (2.12) can be rewritten by

 (2.13)

Assuming that the diffusion of moisture moves in one direction, by ignoring these terms

　　　　　　　   in Eq.(2.13), Eq.(2.14) is described as follows:

 (2.14)

Equation (2.14) represents ODAE, where Dc denotes the diffusion coefficient and f(x, t) denotes 

the distribution function in the thermal diffusion state.

 As described above, it can be expressed using the PDEs in Eq. (2.14), in which the movement 

model of the continuous films has a state variable of the internal vapor pressure.
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3 Drying model of the sheet-type films to be moved

Figure 3 shows the model on this equipment.

 Figure 4 shows the model on the impregnating solvent on the films.

 Let C(z, t) be the internal vapor pressure function in the direction of the z-axis (dry direction),

and BT(z, t) denotes the transfer function on the film side. Let z ∈ [w, d]，t ∈ [0, T].

 Figure 4 indicates the movement model for continuous films with the impregnated solvent 

at a moving velocity v while being dried by diffusion vapor. We assume that the thickness of 

impregnated solvent Ts decreases with the ratio of ∂Ts/∂t on account of the solvent vapor.

 The ratio of ∂Ts/∂t is derived by

 (3.1)

where ν1 denotes the inverse parameter of the solvent density, and r is the drying ratio parameter 

proposed by Clausius? Clapeyron Equation in chemical thermodynamics[4, 5, 6].

 Equation (3.1) represents the constraint equation for the change in thickness of the 

impregnated solvent on films.

 Here, the impregnated solvent thickness of the films is defined by

Definition 3 Impregnating solvent thickness on films：Ts0 < z < w，where Ts0 is

 (3.2)

Definition 4 Film thickness：w < Tm < d，where Tm0 is

 (3.3)

With respect to the movement direction, let x ＝ xn at any point x, and with respect to the z-axis 

direction, the state variable C(z, x, t) is derived by

Fig.3:  Plant model Fig.4:  Applied material model
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 (3.4)

 (3.5)

With respect to the z-axis direction, Eq.(3.4) is

 (3.6)

 (3.7)

 
(3.8)

where the boundary condition is z ＝ 0, -r ・ ΔH is the latent heat of the solvent vapor, ha is the 

thermal conductivity in the impregnated solvent direction, and rc is a general parameter.

 The impregnated solvent thickness is represented by

 (3.9)

 (3.10)

where the boundary equations for the continuous condition at the boundary surface z ＝ w were 

obtained by

 (3.11)

 (3.12)

where both λ1 and λ2 are a thermal conductivity respectively.

 With respect to the film side, both the dynamic model and initial condition of BT (z, t) are 

obtained by

 (3.13)

 (3.14)

where αB denotes a diffusion coefficient.

 According to the set at z ＝ d in Eq. (3.8), it is similarly obtained by

 
(3.15)

where hb is the thermal conductivity to the outside in a drying oven, and rB is called the general 

parameter.
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 Assuming that the change in the thickness of the impregnated solvent is generally 

constrained by

Assumption 1

 (3.16)

 where, η(•) is assumed to be uniformly decreasing function. The diffusion equation that 

describes the impregnated solvent on films in the z-axis direction is generally given by

 (3.17)

where δ(x - xm) denotes the Dirac Delta function distribution and x ＝ xm denotes the distribution 

point of the heat source.

 With respect to δ(x -  xm), δ(x -  xm) ＝ (x, xm), (x, xm) can be represented by the 

distribution function of C∞[8]. According to Eq. (3.16), the impregnated solvent thickness change 

is represented by

 (3.18)

where θ ＝ x/v and θ ＝ 0, then z* ＝ 0 .

 With respect to the impregnated solvent thickness, z is described by

 (3.19)

where z denotes a decreasing function in Fig.5, and can be approximated by a straight line z ＝

 　From this linearization, the change in the direction of x can be regarded as being 

equivalent to the change in the direction of θ. 　Assuming that the term C(x, t) 　in Eq. (2.14)

Fig.5:  Approximate linear model for applying film thickness with changes
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is omitted, the new mathematical model Eq. (2.14) is rewritten as

 (3.20)

where, z ∈ [z*, w] and θ ∈ [0, T].

 The mathematical model of film side is rewritten by

 (3.21)

where, z ∈ [w, d] and θ ∈ [0, T].

 The boundary equation at the borderline z ＝ w between the solvent and film is obtained by

 (3.22)

where, both B1(z) and B2(z) denote the distribution function for the control function f(θ) 

respectively.

 This paper proposes a general diffusion model as follows:

 (3.23)

where z ∈ [z*, L]，θ ∈ [0, T].

　Ts can be derived by

 (3.24)

where C(0,θ) ＝C0(θ) and C(w, θ) ＝Cw(θ).

 In case of z ＝ 0, the boundary condition is derived by

 (3.25)

 In case of z ＝ w, the boundary condition is derived by

 (3.26)

where, assuming that θ  0 because of the extremely thin nature of the impregnated solvent, it 

can be regarded as x in the same way as z*. 　From Fig.5, let x ＝ z* cosθ.

 In the case where there is focus on the diffusion model along the direction of motion, the 

most generalized mathematical equation is derived by

 (3.27)
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where, C(x, 0) ＝C0(x)，x ∈ [0, L]，t ∈ [0, T].

 The boundary conditions at both x ＝ 0 and x ＝ L in Eq.(3.27) are respectively obtained by

 (3.28)

 (3.29)

where both ξ1 and ξ2 denote the constraint functions on each boundary position at x＝0 and 

x＝L, respectively.

 That is, with respect to Eq.(3.27)～Eq.(3.29), the vapor pressure function C(x, t) to the 

impregnated solvent on the film represents the one-dimensional diffusion status along the 

direction of motion. 　When the vapor pressure function denotes C(L, T) at x ＝ L，t ＝ T, the 

impregnated solvent becomes w*. If a constraint function on the solvent thickness is specified, the 

study revealed that the impregnated solvent thickness can be controlled by C(x, t).

 In this paper, the characteristics of the mathematical model revealed the following with 

respect to both the stationary model and the diffusion model, respectively:

◦ It is converted from the transfer function model to the diffusion model by the Lagrange 

differential operator.

◦ Assuming that the impregnated solvent thickness decreases uniformly under the extremely 

thin layer of solvent while impregnating to films, the diffusion of the x-axis direction in the 

same thickness equates as the diffusion of z axis direction.

4 Examples

【Example-1】　Stationary state model

The mixed boundary condition problem, which is a combination of the Neumann and Dirichlet

conditions.

where, let C0(x) ＝ 1.0，x ∈ [0, 1]，t ∈ [0, 1].

For this example, the boundary condition, the eigenvalue and the eigenfunction are respectively

given by
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【Example-2】　Stationary state model

Neumann type boundary condition problem.

where let C(x, t) ＝C0(x).

Exactly,

【Example-3】　ODAE model

The definition related to the diffusion coefficient is

Definition 5 　Definition of diffusion coefficient D

 (4.1)

where, κ denotes a transfer coefficient of films, C, and ρ(x) the transport rate. Eq.(4.1) is rewritten 

as follows[9]:

 (4.2)

 The analytical particular solutions of ODAE is derived by

 (4.3)

where, C(x, t) denotes the diffusion vapor function, and let x ∈ [0, L] and t ∈ [0, T].

 With respect to Eq.(4.3), the initial condition and the boundary condition are respectively

 (4.4)

 
(4.5)
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 (4.6)

 (4.7)

where, a and b represent constants. CL(t) is the state amount at the end of the diffusion vapor, and 

C0(x) is the state amount at the beginning of the diffusion vapor.

 As described above, the equation to constrain the diffusion vapor function C(x, t) is to be 

written in ODAE.

 To perform a normalized nondimensional equation, the following variables in Eq. (4.2) are 

translated as follows:

 (4.8)

From Eq.(4.8), normalized non-dimensional equation is obtained by

 (4.9)

where, assuming that ρ is a constant velocity, let τ ∈ [0,1]，l ∈ [0,1].

 To translate the model in Eq. (4.9) into the mode domain, C(l, τ), which is translated by the 

eigenfunction expansion, is obtained by

 
(4.10)

See the Appendix A, B for further detail[?].

 
(4.11)

where, ζ(l) は，where, ζ(l) is

 (4.12)

According to Eq.(4.12), in order to perform a self-adjoint operation on Eq.(4.9), the model and 

boundary conditions for the related eigenvalues are

 (4.13)

 (4.14)

 
(4.15)

From Eq.(4.13)～Eq.(4.15), both the eigenfunction i
j(l) and eigenvalue λi

j can be obtained by

 (4.16)

 (4.17)
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where Ai
j denotes the constant value that defines the set of orthogonal function systems in the 

eigenfunction i
j(l). See the Appendix A,B for further detail.

 (4.18)

where, αi denotes the solution of the transcendental equation.

 (4.19)

With respect to the parameters in the tables, Table.1，2，3 represent the eigenvalue and the 

eigenfunction-related diffusion parameters. As the eigenvalues become larger, the diffusion 

coefficient also increases. The setting parameters in Fig.6 use the data shown in Table.1. The 

setting parameters in Fig.7 use the data shown in Table.2. The setting parameters in Fig.8 use the 

data shown in Table.3. (1) in Fig.6～Fig.8 show that the vapor diffusion density Ui
j (l, τ) is 

expanded by the eigenfunctions with up to three eigenvalues. (2) in Fig.6～Fig.8 represents the 

vapor diffusion value 　　　　 (3) in Fig.6～Fig.8 represents the eigenvalues in Eq.(4.17).

Table. 1:  Set parameter values Table. 2:  Set parameter values

μ ＝ 0.5 μ ＝ 1.0

αi
1 ＝ 0.69 Ai

1＝ 0.346921 λi
1 ＝  1.08 αi

1 ＝ 0.96 Ai
1＝ 0.479838 λi

1 ＝ 1.17

αi
2 ＝ 3.29 Ai

2＝ 0.104776 λi
2 ＝ 21.77 αi

2 ＝ 3.43 Ai
2＝ 0.196004 λi

2 ＝ 12.01

αi
3 ＝ 6.36 Ai

3＝ 0.055208 λi
3 ＝ 81.02 αi

3 ＝ 6.45 Ai
3＝ 0.108018 λi

3 ＝ 41.85

Fig.6:   Schematic diagram of diffusion vapor 
function

Fig.7:   Schematic diagram of diffusion vapor 
function
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Table. 3:  Set parameter values

μ ＝ 0.5

αi
1 ＝ 1.78 Ai

1＝ 0.931100 λi
1 ＝  1.88

αi
2 ＝ 4.17 Ai

2＝ 0.660658 λi
2 ＝  4.73

αi
3 ＝ 6.95 Ai

3＝ 0.458147 λi
3 ＝ 10.91

5 Results

With respect to the model proposed in this paper, Examples 1 and 2, involving state models that 

are stationary, are derived by the one-dimensional diffusion equation, and Example 3 is ODAE.

All examples could be obtained analytically for a solution which denotes an internal thermal 

diffusion situation under no external force.

 In the case of the drying simulator proposed by Horiuchi et al., it is widely recognized that 

the values measured by the prototype machine agree well with simulation results.

 According to the transfer function obtained by the analytical method in this paper, a 

mathematical model which can be described using PDEs can be obtained easily to represent the 

internal model in a drying oven.

 For applications in a realistic scenario, it is necessary to identify both the various parameters 

and functions. However, on the basis of the control theory results derived by the various PDE 

models, the method proposed by this paper is shown to be useful.
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A Appendix1：Derivation of eigenfunction

According to substitute ζ(l) ＝ e-μl into Eq.(4.13) and run the differential calculus, it can be 

obtained by

 (A.1)

In order to establish Eq.(A.1), the following equation must be satisfied:

 (A.2)

According to get a particular solution by Laplace transform, it can be obtained a particular 

solution from Eq.(A.2) as follows.

 (A.3)

 (A.4)

According to substitute Eqs. (A.3), (A.2) into Eq.(A.2), it can be obtained by

 (A.5)

From Eq. (??A.5）,

 (A.6)
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The solution in Laplace transformation is obtained by

 (A.7)

Let use Inverse Laplace transform Eq.(A.8)

 (A.8)

According to Eq. (A.8), let b ＝ -μ/2，c ＝ μλi

 (A.9)

After setting 　　　　　　　  in Eq.(A.9), the eigenfunction is obtained

B Appendix2: Induction of coefficient with respect to eigenfunction

According to substitute the eigenfunction ψi
j (l) into Eq.(B.1), it is obtained by

 (B.1)

The second order differential equation (B.1) can be solved. According that the eigenfunction in 

this paper form the orthogonal function, it is obtained by

 (B.2)

where, let ζ(l) ＝ e-μl . After substituing Eq.(B.2) into ψi
j(l),ζ(l) and calculating Eq.(B.2), it is 

obtained by

 (B.3)

In order to become one of the left side in Eq.(B.3), both Eq.(eq:f43) and Eq.(B.5) must be satisfied.

 (B.4)
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Eq.(B.5) must be established.

 (B.5)

where, Ai and αi have to satisfy Eqs. (B.6) and (B.7) respectively.

 (B.6)

 (B.7)




