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Abstract
Previously, we have proposed a lot-casting process, namely, the asymmetric simple exclusion process
(ASEP), to improve throughput. The main cause of production retention between processes is the fact
that different processes operate at different speeds, i.e., the problem of working ability. In the present
article, we describe the theoretical background of our previously proposed ASEP model. Numerous
human workers carry out production according to the rules of the production flow system. During this
flow, no worker progresses to the next process until the front process ends. Therefore, data can be
updated one by one from the front step. Furthermore, it is assumed that either the system does not know
the number of clusters in advance or the number of clusters differs with time.

Keyword: cluster model, division vector, asymmetric simple exclusion process, Dirichlet distribution

1 Introduction

In our previous report, we calculated the expected loss value from a lead-time function and verified a
loss function with actual data[1]. Moreover, through theoretical analysis, we clarified that for improved
productivity, minimizing both volatility and fixed costs is important. Comparing synchronous and asyn-
chronous methods revealed a reduction of approximately 10% in the results when using synchronous
throughput. A simple exclusion process is the one-dimensional (1-D) non-equilibrium statistical me-
chanics model, known as the asymmetric simple exclusion process (ASEP). ASEP is used in production
lines to improve production efficiency. As an application method, ASEP is used to optimize the produc-
tion lot[2, 3].

We have also used ASEP to improve the efficiency of the production process. When applied as a
model of a lot production system, ASEP is fundamentally a nonlinear system represented by Burgers ʼ
equation. This indicates that the process transition probability plays an important role. Based on the
experience of conducting three test runs of the production flow process (PFP), we clarify the character-
istics of each process and select the appropriate value[6, 7]. We appropriately arrange the workers in
each process. A highly linear system is obtained from the aforementioned procedure that approaches a
stationary system.

Dr. Nishinari proposed the ASEP model, the theoretical predictions of which are consistent with
simulation results, thereby validating the model. We apply the ASEP model to an actual production
process and also present the comparison of the actual data with PFP. Comparing the ASEP and PFP
production efficiencies, ASEP was able to double the throughput and reduce production costs by 20%[3].
In the present study, we propose a mathematical model using a division-vector concept for ASEP. The
production process comprises numerous workers and processes, which we refer to as the production
space. Consider the production space as a division vector, which is the equipment to be produced. The
elements of the division vector correspond to the lead time, and each element is probabilistic. Therefore,
we can obtain the distribution of occurrence probability using the division vector without conducting a
finite number of tests. The assumptions regarding the division-vector model are as follows:

• The process transition is performed independently for each step.

• There is no correlation concerning the transition of each step.

• The production process primarily depends on the probability in the human work.
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2 Production framework in equipment manufacturer

We refer to the production system in manufacturing equipment industry studied in this paper. This is
not a special system but“Make-to-order system with version control”. Make-to-order system is a
system which allows necessary manufacturing after taking orders from clients, resulting in“ volatility”
according to its delivery date and lead time. In addition,“ volatility”occur in lead time depending on
the contents of make-to-order products (production equipment).

However, effective utilization of the production forecast information on the orders may suppress
certain amount of“ variation”, but the complete suppression of variation will be difficult. In other
words,“ volatility” in monthly cash flow occurs and of course influences a rate of return in these
companies. Production management systems, suitable for the separate make-to-order system which is
managed by numbers assigned to each product upon order, is called as“ product number management
system”and is widely used. All productions are controlled with numbered products and instructions are
given for each numbered products.

Thus, ordering design, logistics and suppliers are conducted for each manufacturer s̓ serial numbers
in most cases except for semifinished products (unit incorporated into the final product) and strategic
stocks. Therefore, careful management of the lead time or production date may not suppress ”volatility”
in manufacturing (production). The company in this study is the ”supplier”in Figure 1 and“ factory”
here. Companies are under the assumption that there are N (numbers of) suppliers; however, this study
deals with one company because no data is published for the rest of the companies (N −1).

2.1 ASEP production processes

The ASEP is a non-equilibrium statistical mechanics model that is referred to as an exclusive process.
It is a simple model in which numerous particles diffuse under the volume-exclusion interaction on a
one-dimensional lattice. Figure 2 shows a one-lot-flowing model in ASEP. The terms α and β denote the
input and output rates, respectively, and p denotes the transition probability from one stage to another[3].

In Figure 3, K1 to K5 are worker numbers, and there is no determined work order. The“consumption
time”represents the in-process consumption time when continuous production is performed. The total
lead time is the processing time of one lot, namely, the total time taken to go through steps 1–5 plus the
time for the remaining 11 to pass through step 5. The theoretical value is derived as follows:

(5 × 25) + (25 × 11) = 400 (2.1)

With respect to the lead time, we obtain the following equation according to Dr. Nishinari[2]. Please
refer to the reference for detailed information[3].

T =
[( 1

1
25

)
+
( 1

1
25

)]
+
(11

1
25

)
+
( 5

1
25

)
(2.2)

where, 1
25 denotes a transition rate. The first and second term denote an input/output time.

3 System features

In Figure 4, we select N from the population, which has elements identified as K types (a1, · · · ,aK).
Furthermore, it is classified into K classes (m1, · · · ,mK). The appearance ratio of the K elements is
stochastic; in other words, the appearance ratio varies with the test. The production space contains the
vector aaa = a1(n1), · · · ,aK(nK). When the data updated from the population belong to the original class,
vector aaa remains unchanged. If the original and new data are replaced, the replacement destination vector
is set to +1, and the vector before replacement is set to −1. Consequently, the total number of pieces
does not change. However, in Figure 5, if the data updated from the population belong to the original
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Figure 1: Business association chart of company of
re-search target




Figure 2: Asep model
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Figure 3: ASEP production model












Figure 4: Choose different production factors of K
type for each test stochastically
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Figure 5: Transition from population to appearance
probability
















Figure 6: System model concept using cluster space
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class, vector aaa should be left as it is; if not, the vector of the updated destination should be set to +1, and
the vector before updating should be set to −1. The total number does not change.

K

∑
i=1

ai = N (3.1)

K

∑
i=1

ni = N (3.2)

Then, pi(ai) =
ni
N , i = 1,2, · · · ,K, where pi is the proportion of ai of cost in the whole and follows the

Dirkle distribution. Here, the production space is denoted by {S,K}, where S and K represent a product
and a process, respectively. Each element is ai j, and the total number is [i]× [ j] = N. However, each
element is assumed to be classified as K type. At this time, ni becomes as follows.

Assumption 3.1

n1 +n2 + · · ·+nK = N (3.3)

Here, the vector expressing the number of elements of this type is as follows.

nnn = (n1,n2, · · · ,nK) (3.4)

Let us now assume that when K = 3, we consider a unit vector with the j-th vector e j, and only the j-th
element is one. For the above example, e j is a k-dimensional vector whose j-th component is one and
the other is zero.

eee1 = (1,0,0), eee2 = (0,1,0) (3.5)

Here, the rate at which the j− type element is excluded (exited) from the production space is assumed
as follows.

Assumption 3.2

w(mmm,nnn− e j) = ccc j
nnn j

nnn
, j = 1,2, · · · ,K (3.6)

where,

ααα = α1 +α2 + · · ·+αK , α j > 0 (3.7)

where, α is the type to be replaced.

Furthermore, when an element of type i changes to type j, if its rate is such that type i is eliminated and
type j equals the rate to be replaced, the rate to be replaced is as follows:

w(nnn,nnn− ei + e j) = w(nnn,nnn− ei)w(nnn− ei,nnn− ei + e j)

= ccci
ni

nnn
d j

n j +α j

nnn+ααα −1
(3.8)

The element α j in ααα is replaced in Equation (3.8). The opposite case can be obtained in the same way.
Assuming that nnn

′
= nnn+ ei − e j, nnn = nnn

′ − ei + e j. Therefore,

w(nnn,nnn− ei + e j) = w(nnn,nnn− ei)w(nnn− ei,nnn− ei + e j)

= ci
ni

nnn
d j

n j +α j

nnn+ααα −1
(3.9)
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The balance of replacement is as follows.

π(nnn) = ci
n j

nnn
d j

ni +αi

nnn+ααα −1

= π(nnn
′
)ci

n j −1
nnn

d j
n j +α j −1
nnn+ααα −1

(3.10)

We assume that a stationary distribution is as follows.

Assumption 3.3

π(nnn) = π1(n1)π2(n2) · · ·πK(nK) (3.11)

We obtain as follows.

πi(ni)π j(n j)c j
n j

nnn
di

ni +αi

nnn+ααα −1

= πi(ni +1)π j(n j −1)ci
n j +1

nnn
di

n j +α j −1
nnn+ααα −1

(3.12)

Therefore, according to the recurrence formula of ni and n j, we obtain as follows.

πi(ni +1)
πi(ni)

= Bigi
ni +αi

ni +1
πi(n j)

π j(n j −1)
= B jg j

n j −1α j

n j
(3.13)

where, Bi and B j are an undetermined multiplier so that a probability distribution of πi(ni) and π j(n j)
exist.

gi =
ci

di
(3.14)

Then, πi(ni) is set as follows.

∑
ni

πi(ni) = 1 (3.15)

The probability distribution of the number ni of elements of type i is as follows.

πi(ni) = (1−gi)
αi

α [ni]
i

ni!
gni

i (3.16)

where, α [ni]
i is derived as follows.

α [ni]
i = αi · · ·(αi +1) · · ·(αi +ni −1) (3.17)

Therefore, the probability distribution of the number of elements of each type is as follows.

πi(ni) = (1−gi)
αi(−gi)

ni
(−αi

ni

)
, i = 1,2, · · · ,K (3.18)

Equation (3.18) represents a negative binomial distribution. Equation (3.18) presents the average of
elements of type i as follows.

E[ni] = αi
1−αi

gi
(3.19)

7

－ 35 －



Therefore, the average of the K type is as follows.

E[N] =
K

∑
i=1

αi
1−gi

gi
(3.20)

For Equation (3.20) to take a positive value, gi < 1. In case of gi = 1(ci = di), the following can be
derived.

π(nnn) =
n!

α [nnn]

K

∏
i=1

α [ni]

ni!
(3.21)

Equation (3.21) is s called a polyar distribution function. Theoretical development so far aimed at reduc-
ing costs or reducing losses. In other words, we aim to improve the cost of production system through
elimination and introduction of elements categorized by such type.

When n is large, it becomes a Dirichlet distribution through Sterling s̓ formula:

π(nnn) =
n!

n1! · · ·nK!

n

∏
i=1

α [ni]
i

α [n]
(3.22)

We define the replacement probability as follows.

Definition 3.1 Replacement probability

P(nnn+ e j|nnn) = f j(n j,n) =
α j +n j

α +n
(3.23)

We define the exclusion probability as follows.

Definition 3.2 Exclusion probability

P(nnn− eK |nnn) =
nK

n
(3.24)

The following is assumed.

P(nnn+ ei − e j) = P(nnn− e j + ei) (3.25)

From Equation (3.25), we obtain as follows.

P(nnn+ ei − e j|nnn) = P(nnn+ ei|nnn)P(nnn+ ei − e j|nnn+ ei)

= P(nnn− e j|nnn)P(nnn+ ei − e j|nnn+ ei) (3.26)

Now, we assume that α1 = α2 = · · ·= αK . We can modify Equation (3.22) as follows.

P(nnn) =
n!

(kβ )[n]
K

∏
i=1

β [n]

n j
(3.27)

where, ∑K
i=1 = kβ .

Generally, let it be (P1,P2, · · · ,PK). If there are n j elements of type [ j] among N samples, if the mixed
states are nnn = (n1,n2, · · · ,nK), the probability of vector nnn is as follows.

P(nnn) =
n!

n1! · · ·nK!
PnK

1 PnK
2 · · ·PnK

K (3.28)

where, we assume that Pi(i = 1,2, · · · ,K) is distributed on the K-dimensional simplex (∆).
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Assumption 3.4

∆ = {Pi ≥ 0, i = 1,2, · · · ,K,
K

∑
i=1

Pi = 1} (3.29)

In the production system developed in the production space {S,K}, type-specific elements that are lead
times appear stochastically based on the ability distribution of each worker. Therefore, we can obtain the
above distribution without conducting a finite number of tests. We also consider using the general Dirich-
let distribution theory below. Now, let θ j be the probability that the ratio p j, j = 1,2, · · · ,m of type
elements appears. At this instance, when the Dirichlet distribution is used, the appearance probability
distribution becomes as follows:

P(θ) =
Γ
(

∑ j p j

)

∏ j Γ(p j)
∏

j
θ p j−1

j (3.30)

With respect to ∏ j θ α j−1, we obtain as follows by integrating mathematically the simplex method of
above description.

∫

θ |∑ j θ j=1,θ j≥0
∏

j
θ p j−1

j dθ =
∫ 1

0
θ p1−1

1 dθ1 ·
∫ 1−θ1

0
θ p2−1

2 dθ2 · · ·

∫ 1−θ1−···θm−2

0
θ pm−1−1

m−1 dθm−1

∫ 1−θ1−···θm−1

0
θ pm−1

m dθm (3.31)

The terms of normal distribution are obtained by sequentially executing the above calculation. We will
treat the probability distribution PK = 1− p1 · · · pK−1 of K−1 dimension defined by the simplex method
as ∆. At this instance, when the probability density function uses the parameter α , it becomes as follows:

f (p) �
K

∏
i=1

pαi−1
i (3.32)

where,

αi j =
j

∑
l=1

αl, A = α1;K (3.33)

The average, variance and Covariance of Dirichlet distribution are derived as follows.

E(P) =
α
A

V (pi) =
αi(A−αi)

A2(A+1)

Cov.(pi, p j) =
−αiα j

A2(A+1)
, i � j (3.34)

We can obtain as follows by normalization f (P).

f (P) =
1

B(α)

K

∏
i=1

pα−1
i (3.35)

where B(α) denotes as follows.

B(α) =
∏K

i=1 Γ(α)

Γ(A)
(3.36)

Equation (3.34) is derived by utilizing Equations (3.35) and (3.36).
The system features are as follows.
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• We classified products to be produced by type.

• We classified workers (groups) for each classified product by ability.

• Synchronization process was considered when constructing the production system.

Here, the products are classified into N types of products. Thus, there exist N types of product having
K different types of part. For example, ak = N, where K and N represent part type and product type,
respectively. Such products are called division vectors. bi, j means that the same type of part bi, j exists
in the product type ai; i.e., ai is the type of product and bi, j is the type of component used in the product
b-type.

4 System model with division vector as state vector

In Figure 6, the production factor Si j is classified into a type-specific vector aaa. We update the production
factors according to the updated rules. The system observes yt to estimate the system state. The state
vector aaa and noise vector vvv are defined as follows.

Definition 4.1 State vector aaa

aaa =




a1(t)
...

ai(t)
...

aK(t)




(4.1)

Definition 4.2 Noise vector vvv

vvv =




v1(t)
...

vi(t)
...

vK(t)




(4.2)

where, K is a number of state.

aaa ≡ (a(t −1),v(t)), vvv ≡ Pv(vt |θ v
t ) (4.3)

The noise vvv(t) is added at the time of generating the state vector. K is a number of state.

Definition 4.3 Different unknown parameters for each time point

θθθ v
t ≡ (θ v

1 , · · · ,θ v
i , · · · ,θ v

K) (4.4)

θθθ v
t has noise vt and changes with time. The mixed distribution Pv(vt |θ v

t ) is that the probability density
distribution is modeled by weighted linear combination of n probability density distributions.

Definition 4.4 Dirichlet distribution Gv

Gv ∼ DP(Gv
0,r

v) (4.5)

where, D is Dirichlet process. Gv
0 and rv are a base distribution and a scaling factor respectively.
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Assumption 4.1 Determination of unknown parameter θ v
i

θ v
i |Gv ∼ Gv, i = 1,2, · · · t = 1,2, · · · (4.6)

vi(t) is obtained as follows.

vi(t)|θ v
i ∼ Pv(vi(t)|θ v

i (t)) (4.7)

In order to observe the system state, the system is constructed as follows.

Definition 4.5 Observation vector www

www =




w1(t)
...

wi(t)
...

wK(t)




(4.8)

www is defined as follows.

Definition 4.6 Observation system y(t)

y(t) = b(a(t),w(t)), w(t)≡ Pw(ωt |θ w
t ) (4.9)

where, ωt and θ w
t are a noise and parameter respectively.

Gw ∼ DP(Gw
0 ,r

w), θ w
i (t)|Gw ∼ Gw (4.10)

where, Gw is Dirichlet distribution. θ w
i (t) is determined by Gw. Both of Gv

0 and Gw
0 are a base distribution.

Both of rv and rw are a scalling factor. Gv
0, Gw

0 , rv and rw are known.

Definition 4.7 Hyper parameter　 φ(Gv
0,G

w
0 ,r

v,rw)

The system model is derived as follows.

at = Aat−1 +Btvt +Gtvt

yt =Cta+wt , wt ∼ N(µw
t ,Σ

w
t ) (4.11)

where, N(µw
t ,Σw

t ) is a normal distribution with both of average µw
t and volatility Σw

t .
We describe for confirmation as follows.

Gv ∼ DP(Gv
0,r

v), θ v
t |Gv ∼ Gv, ,vt |θ v

t ∼ N(vt ; µv
t ,Σ

v
t ), t = 1,2, · · · (4.12)

Gw ∼ DP(Gw
0 ,r

w), ,θ w
t |Gw ∼ Gw, wit |θ w

t ∼ N(wt ; µw
t ,Σ

w
t ), t = 1,2, · · · , (4.13)

where, both of µv
t and µw

t are averages. Both of Σv
t and Σw

t are volatilities. Gv
0 and Gw

0 follow the
inverse Wishart distribution of (µv

0 ,Σ
v
0,r

v
0) and (µw

0 ,Σ
w
0 ,r

w
0 ) respectively. µv

0 and µw
0 are an initial average

of system and initial average of observation system respectively. Σv
0 and Σw

0 are an initial volatility of
system and initial volatility of observation system respectively.

Definition 4.8 Hyper parameters φv(µv
0 ,Σ

v
0,r

v
0) and φw(µw

0 ,Σ
w
0 ,r

w
0 )
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Because the system model assumes normality and linearity, when y1(t) and θ1(t) are given, the posterior
distribution of P(a0(t),θ1(t)|y1(t),φ) follows a normal distribution, and its mean and covariance matrix
can be estimated using a Kalman filter. φ is also a hyper parameter.

Now, the proposed system model from conventional is as follows:

∂S(t,x)
∂ t

= L [S(t,x)]+B(t,x)u(t,x), t ∈ Θ, x ∈ Ω (4.14)

According to Equation (4.14), the cluster model is derived as follows.

daaa(t)
dt

= AAA(t)aaa(t)+BBB(t)uuu(t)+GGGvvv(t) (4.15)

where,

v(t)≡ Pv(v(t)|θ v(t)), Gv ∼ DP(Gv
0,r

v) (4.16)

The parameter θ v(t) can be denoted as follows.

θ v(t)|Gv ∼ Gv, t ∈ Θ ′, Θ ′ ⊂ Θ (4.17)

where, v(t)∼ N(µv
t ,Σv

t )
The output model is described as follows.

y(t) =CCC(t)aaa(t)+www(t) (4.18)

where,

w(t)≡ Pw(w(t)|θ w(t)), Gw ∼ DP(Gw
0 ,r

w) (4.19)

According to Equation (4.25), the parameter θ w(t) is represented as follows.

θ w(t)|Gw ∼ Gw, t ∈ Θ
′

(4.20)

where, w(t)∼ N(µw
t ,Σw

t ).
Therefore, we obtain the system model as follows.

daaa(t)
dt

= AAA(t)aaa(t)+BBB(t)uuu(t)+GGG(t)vvv(t)

y(t) =CCC(t)aaa(t)+www(t) (4.21)

4.1 Example of the cluster model analysis procedure

The assumptions regarding the cluster model are as follows:

• The process transition is performed independently for each step.

• There is no correlation concerning the transition of each step.

• The production process primarily depends on the probability in the human work.

The model analysis procedure is as follows.

• (Standard working time) - (Classified into clusters according to a certain process work time of one
worker), that is δC < k(k = 0,1,2,3,4,5). However, it follows the exchange rule.

• Change element Pi of cluster ai.
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After that, follow the procedure as follows.
let ai be the i−th element of the division vector aaa, and let ai be in accordance with the Poisson

distribution P(ai(t)|λ (t)). Let’s set yi(t)≡ P(ai(t)|λ (t)) again.

yi(t) = ai(t −1)+ vi(t), vi(t)∼ N(0,τ2
i (t)) (4.22)

where, τ2
i (t) ∼ IG(s j,v j). IG is an inverse gamma distribution and v j is a Mixed Dirichlet process. Let

vi(t)∼Gv. r, initial value yi(0), ai(0) and τi(0) are known, which are given by the initial test. t ∈ [τ,τ+t]
Now, let {ãi} represent the element of ai occurring in t cycle. This occurrence is subject to the

Poisson process.

Pr[(ãτ+t
i − ãτ

i ) = ki] =
e−λi ·λ ki

i
ki!

(4.23)

Therefore,

EP
0 [ã

τc
i ] = λi, t = τc (4.24)

Definition 4.9 Division vector with cost P[ãτc
i ]

P[ãτc
i ] = (βRi)EP

0 [ã
τc
i ] (4.25)

where, β (0 < β < 1) is a parameter and R represents the cost per element.
Let the cost rate be rp.

P[ãτc
i ] = e−rpτ(βRi)E0[ã

τc
i ] (4.26)

Let the random variable of E0[ã
τc
i ] be xi(t), the state equation representing cost is as follows.

dxi(t)
dt

= aixi(t)+biui(t)+givi(t), i = 1,2, · · · ,K (4.27)

where, ai = e−rpτ(βRi). Again, we represent the variables as follows.

vi(t)∼ N(0,τ2
i (t)), τ2

i (t)∼ IG(s j.v j), vi(t)∼ Gv (4.28)

With respect to Equation (4.28), the number of clusters is unknown in advance. Alternatively, the number
of clusters may differ depending on the point in time being considered. However, the upper limit of the
number of clusters is fixed. Consequently, we could represent a linear equation (4.27).

5 Results

In this paper, we have modeled the theoretical background of a production process implemented in
ASEP using division vectors. We constructed a dynamic model configuration of clusters including costs
(division vector with type). Under the assumptions presented herein, the characteristics of the Dirkle
distribution do not appear. These will be investigated in future work.
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