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Abstract. This paper proposes a mathematical model that is derived from bilinear par-
tial differential equations (BPDs) in order to configure a control system including the
external heat equipment (EHE) proposed in Part1. It is widely recognized that the math-
ematical model of the heat exchange unit has been reported. The target control system
can be configured using the control parameter of the overall heat exchange coefficient
(OHEC), which is given using a linear approximation from BPDs to an ordinary dif-
ferential equation (ODE). The numerical simulation results are also represented for the
optimal control system, and the gradient method is used in this simulation. Our findings
show that this study is suitable for possible practical systems.
Keywords: Semiconductor manufacturing equipment, Thermal reaction process, Bilin-
ear partial differential equation, Distributed parameter system

1. Introduction. Previously, many studies on the optimal control system of a dis-
tributed parameter system (DPS) have been reported. With regard to the DPS, these
studies have been reported and incorporate advanced mathematics such as the semigroup
theory. The models in the previous studies focus on hyperbolic partial differential equa-
tions and the variable parameters depending on time and spatial parameters [1].

In such DPS studies, the derivation of optimal control systems is proposed using a
bilinear partial differential equation (BPD). The DPS with time delay is proposed for a
feedback control system [3]. With regard to the DPS, the target model is described by
a hyperbolic partial differential equation. This mathematical model includes a diffusion
term and an advection term, and it has been reported that the control system can be
configured in a more realistic manner [4].

With regard to nonlinear DPS, this study focuses on an optimal control system. The
analytical process uses a linearization method that approximates from an infinite-dimens-
ional space to a finite-dimensional space. This method uses the single-network adaptive-
type neural network, and is considered to be a very interesting area of research [5].

With regard to the optimal control system for heat exchange, a previous study obtains
the optimal solution that approximates from BPDs to ODE along characteristic curves
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[6]. This paper obtains the optimal configuration and optimal strategy for semiconductor
manufacturing equipments by applying the idea proposed by Shima et al. Our proposed
system was constructed using the control parameter of the overall heat exchange coeffi-
cient (OHEC). This approach is suitable for constructing a relatively practical system.
The numerical simulation results are also reported for an optimal control solution. The
gradient method is used in this simulation. The findings show that this study is suitable
for possible practical system.

2. Modeling for Heat Reaction Process. Figure 1 shows the schematic diagram of
a heat reaction unit.
Let the parameters used in this study define as follows:

Definition 2.1. Definitions for various variables
vb = Vb + LbS: Substantial volume of the reaction process unit [m3]
vh = Vh + LhS: Substantial volume of the heater unit [m3]
Vb: Substantial volume of the heater unit [m3]
Vh: Substantial volume of the heater unit [m3]
Lb: Effective length of the reaction process side [m]
Lh: Effective length of the heater unit [m]
S: Cross-sectional area of the pipe [m2]
Θb: Internal temperature of the reaction process [K]
Θh: Internal temperature of the heat unit [K]
q: Flow rate [m3 · s−1]
ρ: Density of the reaction mixture [kg ·m−3]
c: Heat capacity of the reaction mixture [Cal ·Kg−1 ·K]
P : Input power of the reaction process [W ]
H: Input power of the heat unit [W ]
Θ0: Ambient temperature of the reaction process [K]
Pb: Exothermic reaction of the reaction process [W ]
κ0: Coefficient of heat dissipation to the outside [s−1]
1/R: External radiation coefficient of the reaction mixture [s−1]
CM : Heat capacity of the heat unit [Cal ·Kg−1 ·K]
Θc: Ambient temperature from the outside [K]
U(t): Overall heat transfer function (control parameter)

As a method of heating films in the reaction process, the following two methods are
considered.
The heat unit is installed directly into the reaction process unit as the built-in type in

Figure 2(a), and the thermal model can be derived by

vbρc
dΘb

dt
= κ0vbρc(Θ0 −Θb) + Pb + P (1)

where, let Θb(0) = Θb0 .
To realize semiconductor miniaturization processes, such systems that are widely used

conventional methods were used until a few years ago. However, their usage is again
increasing.
Figure 2(b) shows that the system is capable of heating the reaction liquid indirectly,

instead of requiring that the heat exchange unit be installed directly into the reaction
process.
The above system model as Figure 2(b) can be shown as Figure 3.
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Figure 1. Schematic of
reaction process

Figure 2. (a) Buit-in heater,
(b) outside heater

Figure 3. Detailed model of
the external heat system

Figure 4. Conceptual model
of the external heat

With regard to the external heat unit, Figure 4 shows the schematic diagram of this
model. In this case, the model including the external heating equipment (EHE) is ex-
pressed as

vbρc
dΘb

dt
= {−Θb +Θh(t, L))}qρc+ (Θ0 −Θc)κ0v0ρc+ Pb (2)

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
=

Û(t)

RCM

{RΘc(t)−Θh(t.ξ)} (3)

Û(t) ≡ U(q,H, t : ξ) (4)

where, let U(t) be an OHEC, let ξ be a spatial variable at this time, and let 0 ≤ ξ ≤ L,
L ∼= Lb + Lh.

Figure 5 shows the schematic diagram used to construct the control system configu-
ration obtained using the exact linearization method. As shown in Figure 5, it can be
described by BPDs including EHD. The control parameter is to use the OHEC.
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Figure 5. Reaction process
control system equipment

Figure 6. Temperature dis-
tribution Theta(t, ξ)

Figure 7. Computational procedure

As EHE is generally heat exchanger, EHE can be described by

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
=

1

RCM

Û(t, ξ)

{
RΘc(t)−

A

(Vh + Lhs)ρc
Θh(t, ξ)

}
=

Û(t, ξ)

RCM

{k0Θc(t)− k1Θh(t, ξ)} (5)

where, the parameter A denotes a heat exchange effective area [m2], let vb = Vh + Lhs,
and q(t) denotes the advection velocity of liquid.

3. Flow Control on the Model Derived Using the BPDs-OHEC as the Control
Parameter-. This section discusses the optimal control problem derived by the BPDs.
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Figure 8. Computed control Figure 9. Behavior of
temperature distribution

Figure 10. Behavior of per-
formance index

Figure 11. Computed control

Because Equation (5) is suitable for the target model system, it is obtained by

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
=

Û(t, ξ)

RCM

{k0Θc(t)− k1Θh(t, ξ)} (6)

where, it assumes that Θc(t) is derived as follows:

Assumption 1.

Θc(t) ≡ Θc (const.) (7)

From this assumption, Equation (6) can be rewritten by

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
=

Û(t, ξ)

RCM

{k0 − k1Θh(t, ξ)} (8)
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Figure 12. Behavior of tem-
perature distribution

Figure 13. Behavior of per-
formance index

Figure 14. Computed control Figure 15. Behavior of tem-
perature distribution

Let w(t) = Û(•)/RCM , Equation (8) is obtained by

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
= w(t){k0 − k1Θh(t, ξ)} (9)

The particular solution exists in Equation (9) as follows [7]:

1. T ≤ TR: TR Residence time in the heat exchanger. The switching time T0 is derived
by

T0 = − 1

M
ln

Θ∗ − k0
Θ(tf )− k0

(10)
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(a) Θ−k0
Θ(tf )−k0

< 1,

u∗ = M, ∀t ≤ T (11)

u∗ =

{
M : 0 ≤ t ≤ T0

0 : T0 ≤ t ≤ T
(12)

(b) Θ−k0
Θ(tf )−k0

> 1,

u∗ = m, ∀t ≤ T0 (13)

u∗ =

{
m : 0 ≤ t ≤ T0

0 : T0 ≤ t ≤ T
(14)

2. T > TR

In the case of TR ≤ t ≤ T , the desired temperature is maintained. In this case,
the optimal control strategy can be determined by the dynamic characteristics of
this system, and is derived by

u(t)− u(t− TR) = 0, t ≥ TR (15)

The optimal control strategy u∗(t) within the residence time TR is derived by

u∗ = M or m, ∀t ≤ T0 (16)

u∗ =

{
m : 0 ≤ t ≤ T0

0 : T0 ≤ t ≤ T
(17)

In the case where the residence time is exceeded, e.g., u(t) = u(t − TR), it is rec-
ommended that the process should be carried out repeatedly using the optimal control
strategy u∗(t). Let u(t), m ≤ u(t) ≤ M (m < 0,M > 0).

If the residence time 0 ≤ t ≤ TR, the optimal control strategy u∗(t) equals M (or m)
uniformly. If the temperature does not reach the desired temperature, it is derived by

T0 = − 1

M
ln

Θ∗ − k0
Θ(tf )− k0

> TR (18)

As described above, the new desired temperature Θ∗ exceeds the given limit, and it is
physically impossible to satisfy such a change request.

Figure 16. Behavior of performance index
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4. Numerical Example. The purpose of this numerical examples indicates that the
optimal control strategy and performance index varies when several parameters fluctuates.
According to the parameter setting status, the convergence to the optimal control and
the desired temperature is different respectively. However, the values of the evaluation
function for all case of parameters obtain the similar results.
Here, in the numerical simulation, the target range of the residence time, we examine

the case that it is the residence time (T ) T ≤ TR. If the control parameter is designed
according to the OHEC, the evaluation function, initial condition, and boundary condition
are derived by

J =

∫ T

0

[Θh(t, L)−Θ∗]2dt → min
w(t)

(19)

Θh(0, ξ) = Θh0(ξ) (20)

Θh(t, 0) = Θh0(t) (21)

where, Θh0(t) denotes the temperature at the entrance through which the object moves
into the drying oven.
Here, to minimize Equation (19) given by Equations (20) and (21), it is to find the

control parameter w(t).
The theory of the first-order partial differential equation indicates that the ODE can be

obtained from a first-order partial differential equation using the approximation method.
To minimize Equation (19), ODE should be solved as follows [7]:

dt

1
=

dξ

q(t)
=

dΘ

w(t)(k0 −Θ
(22)

The characteristic curves can be obtained by integrating Equation (22). However, there
are two cases for which the control time T is within the residence time TR and exceeds it.
Both the initial and boundary conditions need to be considered. For the initial condition,
the characteristic curves are derived as follows (See Figure 6):

Θ(t, ξ) = k0 +

{
Θ0

(
ξ −

∫ t

0

q(τ)dτ

)
− k0

}
× exp

(∫ t

0

w(τ)dτ

)
(23)

The temperature of the way out at ξ = L in the drying oven is given by

Θ(t, L) = k0 +

{
Θ0

(
L−

∫ t

0

q(τ)dτ

)
− k0

}
× exp

(∫ t

0

w(τ)dτ

)
(24)

To consider the control strategy used by the OHEC, let q(t) = q0, and the control
function is rewritten by

u(t) = w(t)− w0 (25)

z(t) = Θ(t, L)− k0 (26)

Substituting into the above equation, the optimal control function u(t) must be

ż(t) = −u(t)z(t) (27)

From Equation (27), the control problem requires us to identify a control method that
minimizes Equation (19) by the gradient method under the control parameter limitation
of m ≤ u(t) ≤ M (m < 0,M > 0). The Hamiltonian on this problem is as follows [8]:

H = −1

2
(z −Θ∗ + k0) (28)
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The differential equation that should satisfy the optimal trajectory is obtained by

ϕ̇ = −∂H

∂z
= uϕ+ (z −Θ∗ + k0) (29)

ż = −∂H

∂ϕ
= −uz (30)

where, ϕ(t) denotes the conjugate condition variable.
Let the initial condition be z(0) = Θ0(L)−k0, the final condition z(T ) is no constraint,

and let ϕ(T ) = 0.
According to the previous study, the gradient function that is used to search for the

optimal solution is as follows [8]:

g(t) = −
(
∂H

∂u

)
z(t),u(t),ϕ(t)

= ϕ(t) · z(t) (31)

We now discuss the computational algorithm. The discrete control function ui+1 is
derived by

ui+1 = ui − α

(
∂H

∂u

)
zi,ui,ϕi

(32)

where, α denotes a gradient coefficient.
Because the control function ui+1 is constrained, this control function is determined

using the following method.
It has been already known that the optimal control strategy is the bang-bang control

and singular control. It is sufficient to discuss the constraints of the control function, and
its constraints of the control function are derived by

u∗ =

{
M or m : 0 ≤ t ≤ T0

0 : T0 ≤ t ≤ TR
(33)

With regard to the calculation algorithm, see Figure 7.

Table 1. Set parameter values

Figure 8, Figure 9 Figure 11, Figure 12 Figure 14, Figure 15
Time step = 1× 10−1 Time step = 1× 10−2 Time step = 1× 10−3

Slope coefficient Slope coefficient Slope coefficient
= 1× 10−3 = 1× 10−2 = 1× 10−1

ε = 1× 10−9 ε = 1× 10−9 ε = 1× 10−9

The various values used in the numerical simulation here are as follows. Θ∗ = 50◦C,
k0 = 100◦C, Θ0(0) = Θ0(L) = 20◦C, q0 = 1m/sec, L = 4m, TR = 4sec, T = 3sec,
u = w(t)− w0 = 0.40− 0.1z = 0.28.

5. Conclusion. As described above, by transforming the BPDs along the characteristic
curves, we were able to obtain the exact mathematical model. Note that the translated
ODE was given by the finite-dimensional optimal control problem. We were able to find
the optimal solution by solving the optimal problem that controls the parameter as the
OHEC under ODE. It is theoretically easy to understand the concept that approximates
from BPDs to ODE using the characteristic curves.

Therefore, we confirmed that the control strategy became a bang-bang control by taking
a specific fixed value, and another strategy that was called the singular control had a value
of zero.
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This paper also presented the simulation results that were used to calculate the ODE
for the evaluation of the outlet side temperature using the gradient method. However, our
simulation results were not compared with those of other methods, because the approach
used in this paper has been used for optimal problems with conventional heat exchange.
Therefore, this approach is useful for engineering techniques.
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