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Abstract. We clarify the self-similarity of fluctuations in a supply chain system and
present a size-independent mathematical model of a supply chain system using Langevin-
type stochastic differential equations. As numerical examples, we provide density spectra
(criteria of synchronization processes) for a given frequency ranges (lead time). The
self-similarity of fluctuations is given by the function of throughput deviations within the
process. We also demonstrate that for this supply chain system, when the time constant
of the time correlation function possesses a uniform Poisson distribution, the system
exhibits f−1 fluctuation and when this time constant possesses a uniform distribution, the
system exhibits f−2 fluctuation. Furthermore, the supply chain system has a Lorentzian
spectrum under the condition of fluctuations having spectral density. We also verify the
self-similarity in the supply chain system. The probability distribution of cost rate based
on the lead time exhibits a normal distribution. Furthermore, the probability distribution
for the absolute value of the cost rate deviation based on the lead time exhibits a power-law
distribution. Finally, regarding the management strategy to be taken by the manufacturer,
we propose that profit can be increased when adopting a strategy that purposefully leads
to a state of excessive production or one of excessive order entries.
Keywords: Self-similarity, Fluctuation, Power-law distribution, Throughput deviation,
Spectral density

1. Introduction. Conventionally, in physics, it is known that, assuming that the scaling
law holds as is the case with a phase transition phenomenon, the probability density
function becomes power-law distribution [1]. Due to occurrence of an unforeseen situation
in an economic phenomenon such as a stock price fluctuation and a yen-dollar exchange
fluctuation, fast and furious volatility of stock prices or rapid fluctuation of yen-dollar
exchange is caused. Further, also in the information communication network field, it
has been reported that, as a result of similar data analysis about first and furious traffic
fluctuations, it becomes power-law distribution [2, 3, 4, 5]. It is widely known that a field
of econophysics as we know it today has been established.

With respect to a production process in manufacturing industry, as a result of analysis
based on data of a rate of return of companies and its deviation collected over 10 years or
more, we have noticed that such data has random variation [7]. By performing the data
analysis, relation between a value of rate-of-return deviation and a production through-
put became clear to some extent. “Fluctuation model of rate-of-return deviation” is of
self-similarity, and it shows fractal nature [5, 6, 12]. Also, this power-law distribution
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characteristic has “fluctuation” nature in phase transition [5, 6]. For example, occurrence
of fluctuation and the like were made clear through recognition as a phase transition
point.
In a previous study [14], we addressed the problem of reducing construction work and

inventory in the steel industry. Specifically, we investigated the relationship between
variations in the rate of construction and delivery rate. In this study, the authors perform
analysis using the queuing model and apply log-normal distribution to model the system
in the steel industry [14].
Moreover, several studies have reported approaches that lead to shorter lead times

[15, 16]. From order products, lead time occurs on the work required preparation of the
members for manufacturing.
Many aspects can potentially affect lead time. For example, from order products, the

lead time from the start of development to the completion of a product is called the
time-to-finish time, such as the work required preparation of the members for production
equipments. Moreover, several studies have focused on reducing customer lead times. In
[17], the author addresses the problem of reducing the production lead time.
In [18], the authors propose a method that increases both production efficiency and

production of a greater diversity of products for customer use. Their proposed approach
results in shortened lead times and reduces the uncertainty in demand. Their method
captures the stochastic demand of customers and produces solutions by solving a nonlinear
stochastic programming problem.
In summary, several studies have considered uncertainty and proposed practical ap-

proaches to shorten the lead time. The demand is treated as a stochastic variable and
apply mathematical programming. To our knowledge, previous studies have not treated
lead time as a stochastic variable. Because fluctuations in the supply chain and market
demand and the changes in the production volume of suppliers are propagated to other
suppliers, their effects are amplified. Therefore, because the amounts of stock are large,
an increase or decrease of the suppliers’ stock is modeled using differential equation.
In our previous research, we propose the following conclusion. If an amount of money of

order entries and an amount of money of production are stochastic, accumulated excessive
order entries becomes of Brownian motion, and thus a random “fluctuation” occurs in
hour to hour order entries and production even though it might be of a small degree.
In comparison with a case where production is made to conform to the average order
entry, profit can be increased in a case where strategy to purposefully lead to excessive
production or excessive order entries state is adopted [7].
On the other hand, in a previous study of a production process, we constructed a state

in which the production density of each process corresponds to the physical propagation
of heat [19]. Using this approach, we showed that a diffusion equation dominates the pro-
duction process [8]. Moreover, we made it clear that manufacture of products proceeds in
multiple stages from the beginning of production. Such volatility is encountered in every
stage of manufacturing, and the delays in the production line propagate this volatility to
the successive step. A delay in the production process is equivalent to a “fluctuation”
in physical phenomena [11]. To reduce lead-times of a production system, we propose
using a mathematical model that focuses on the selection process and adaptation mech-
anism of the production lead time [9]. We model the throughput time of the production
demand/manufacturing system in the manufacturing stage by using a stochastic differ-
ential equation of log-normal type, which is derived from its dynamic behavior. Using
this model and the risk-neutral integral, we define and compute the evaluation equation
for the compatibility condition of the production lead time. Furthermore, we apply the
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synchronization process and show that the throughput of the manufacturing process is
reduced [10, 12].

With respect to production method, we described the differences between the syn-
chronous and asynchronous models and showed that the throughput of a manufacturing
process depends on volatility [13]. Synchronization implies that the machines and as-
sembly lines manufacture the required production volumes in accordance with timing
requirements. Moreover, to understand the difference between the asynchronous method,
which causes a delay in the production process, and the synchronous method, which re-
duces the process throughput time in production processes, we manufactured equipment,
That is, the synchronous method is the best way to product equipments [13].

In this study, we clarify the self-similarity of production processes by calculating spectral
densities across a range of frequencies. We suggest that the self-similarity of fluctuations is
proportional to throughput deviations within a process. Here frequency denotes lead time
– an essential factor to determine the lead-time. To maintain the lead time in production
processes, the processes must be properly synchronized. We suggest that a criterion of
synchronization processes is suitable for spectral density and verify the self-similarity of
fluctuations through numerical examples.

We report on the existence of the self-similarity of these fluctuations and note the f−1

and f−2 fluctuations. We also verify self-similarity in the system through experiments on
the supply chain system. We have been producing control equipment using the supply
chain system. Nine workers in total are involved, and the production process is composed
of six stages. To compare the form of production, we roughly carry out four patterns of
asynchronous and synchronous methods.

In the analysis results of the cost rate data based on the lead time, the probability
distribution, which represents cost rate versus the deviation of cost rate based on the
lead time, exhibits a normal distribution. Furthermore, the probability distribution for
the absolute value of the cost rate deviation based on the lead time exhibits a power-law
distribution. The power-law distribution suggests the existence of self-similarity in the
production process.

In this report, regarding the management strategy to be taken for a manufacturer,
we propose that it is possible to increase profit by adopting a strategy that purposefully
leads to a state of excessive production or one of excessive order entries. This management
strategy is ideal on the basis of analysis of the cost rate of the production process. To the
best of our knowledge, the self-similarity of fluctuations in a supply chain system has not
been previously reported.

2. Production Systems in the Manufacturing Equipment Industry. The produc-
tion methods used in manufacturing equipment are briefly covered in this paper. More
information is provided in our report. This system is considered to be a “Make-to-order
system with version control”, which enables manufacturing after orders are received from
clients, resulting in “volatility” according to its delivery date and lead time. In addition,
there is volatility in the lead time, depending on the content of the make-to-order products
(production equipment).

In Figure 1(A), the “Customer side” refers to an ordering company and “Supplier (D)”
means the target company in this paper. The product manufacturer, which is the source
of the ordered manufacturing equipment presents an order that takes into account the
market price. In Figure 1(B), the market development department at the customer’s
factory receives the order through the sale contract based on the predetermined strategy.
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3. Supply Chain System. We study a process structure to increase throughput by
dynamically changing the production system.
Figure 2 illustrates a company’s decision-making process. The business monitors per-

ceived demand trends. When a customer order is received, the perceived trend is analyzed.
Based on the analysis, the company is able to decide how to respond to the analyzed de-
mand.
Therefore, we require a dynamic supply chain management model. A diagram focusing

on the supply chain between an assembly manufacturer and a parts suppliers is shown in

Figure 1. Business structure
of company of research target

Figure 2. Decision-making
process within the company

Figure 3. Supply chain man-
agement area

Figure 4. Supply chain and
production field
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Figure 3. We propose a complex supply chain model and a stochastic field (referred to as
production field) in the production process (see Figure 4).

We propose that the production processes from the completion of product to delivery
to the customer are similar to a continuous time model of thermal diffusion in physics.
From this, we obtain the following.

To produce a product, the target company designs a product, orders materials from a
parts supplier, initiates production, and then ships the product to a customer. A series
of such operations leads to an inherent time delay. We stochastically analyze under the
assumption that it is not necessarily a flow of deterministic information. This flow of a
series of operations is simply a supply chain [10].

4. Distribution Characteristics of Throughput Deviations within a Process.
We derive the diffusion structure model as follows:

∂h(t, x)

∂t
= Lt,xh(t, x) + b(t, x)h(t, x)Z(t, x) (1)

∂h(t, x) = Lt,xh(t, x)∂t+ b(t, x)h(t, x)Z(t, x)∂t

= Lt,xh(t, x)∂t+ b(t, x)h(t, x)∂W (t, x) (2)

where h(t, x) ≡ C(t+ 1, x)− C(t, x).
Equation (2) derives the diffusion model of throughput deviations within a process.

∂h(t, x)

∂t
= [α + ξ(t, x)]h(t, x) +D2∂

2h(t, x)

∂x2
(3)

< ξ(t, x) · ξ(t′ , x′
) >= 2δ(t− t

′
)δ(x− x

′
) (4)

Equation (3) is rewritten as a stochastic partial differential equation (PDE) with advection
as follows:

∂h(t, x)

∂t
+ v

∂h(t, x)

∂x
= D2∂

2h(t, x)

∂x2
+ b(t, x)h(t, x)Z(t, x) (5)

By rewriting Equation (5), we are able to obtain the following:

∂h(t, x) =

[
D2∂

2h(t, x)

∂x2
− v

∂h(t, x)

∂x

]
∂t+ b(t, x)h(t, x)Z(t, x) (6)

In other words, “fluctuation” is caused by noise, which depends on the state of process
throughput deviation. From Equation (3), we treat as a random variable rather than a
growth rate (trend factor). In this study, the target mathematical model is treated as
having added noise, which depends on state variables (state function) that are inherent
in the process.

From the above description, we present a stochastic PDE for our model (Equation (6)).
We also describe a phase transition for the same target system. The mathematical model
that describes phase transition conforms to a study proposed by Yamamoto et al. [21].

Here we describe the Ginzburg-Landau free energy (G-L free energy) in a manufacturing
industry as follows.

Definition 4.1. Free energy: F (Si) related to production quantity

F (h) =

∫ L

0

[r
2
(∇h)2 +W (h)

]
dx (7)

As previously explained, order parameter Si(x, t) is a variable that is related to phase
transition. Equation (7) indicates that free energy given by the space integration of a
function depends on order parameter Si(x, t) and is G-L free energy. In addition, f(Si)
indicates a potential function, and ∇Si represents fluctuations.
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Here a state where Equation (7) becomes minimum in processes is found. When Si(x, t)
is changed by δSi(x, t), free-energy changes δF (Si) are as follows, where the space variable
x = [0, L] is one-dimensional.

W (h) =
1

8
h4 − 1

4
h3, h > 0 (8)

Then, in closed system, we describe the following:

dF (h)

dt
=

∫ L

0

δF (h)

δh
· ∂h
∂t

dx ≤ 0 (9)

where δF (h)/δh indicates Furesshe differential of F (h).

∂h

∂t
= −L(h)

δF (h)

δh
, L(h) > 0 (10)

If Equation (10) is satisfied, Equation (9) is able to satisfy [22], where a boundary con-
dition holds until the completion of the entire process. Within the entire process cycle,
throughput is as follows, because Equation (11) is satisfied within the entire process.

∂h

∂ν
= 0, ν ∈ [0, T ]× [0, L] (11)

From Equation (11), we obtain the following:

∂h

∂t
= rL(h) · ∇h+

1

2
L(h)h(1− h2) (12)

where the model with the consideration of noise is as follows:

∂h = rL(h) · ∇h∂t+
1

2
L(h)h(1− h2)∂t+ b(t, x)h∂W (t, x) (13)

Then, if L(h) ≡ 1, we obtain the following:

∂h(t, x) = r · ∇h(t, x)∂t+
1

2
h(t, x)(1− h2(t, x))∂t+ b(t, x)h(t, x)∂W (t, x) (14)

From above description, the model that indicates a phase transition can be derived as
Equation (14).

5. Self-Similarity Model of Fluctuations. We refer to Equation (3) as a throughput
model. The throughput deviations are regarded as a function of time only in Equation
(15).

dh(t)

dt
+ r(t)h(t) = f(t) (15)

where f(t) represents the nonlinearity of the production processes and noise due to non-
linearity with other suppliers.
Thus, Equation (15) becomes a well-known Langevin-type stochastic differential equa-

tion [23].
In this study, we show that a throughput rate is a model specified by a Langevin-type

stochastic differential equation regardless of the size of the supply chain system. In other
words, we indicate the self-similarity of the supply chain system.
Such a model can be explained as follows. An inter-arrival time in the supply chain

system introduces fluctuation. The inter-arrival time is a Poisson process with time
uniformity when the fluctuation is small. However, fluctuation affects the entire process
when complex arrival processes become large. We illustrate the supply chain concept in
Figure 5.
As shown in Figure 5, we define scale transform as follows.
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Figure 5. Supply chain sys-
tem concept diagram

Figure 6. Supply chain
throughput model

Definition 5.1. Scale transform

1. a ≡ Ω: System scale of a supply chain system (constant).
2. b ≡ ρ/ΩE: (2) Movement speed in accordance with the system scale of the supply chain

(constant).
3. t

′
= ρ/ΩE · t: Time.

4. ρ: (4) Rate of import of materials depending on the scale of the supply.

This supply chain model is shown in Figure 6.
Then, according to the model shown in Figure 6, we assume the following relationship

between Sn−1 and Sn.

Assumption 1. Following equation√
Ω · ΩE

ρ
hn−1

( ρ

ΩE

· t
)
= hn(t) (16)

Assumption 2. A factor related to noise√
ρ
Ω

ΩE

fn−1

( Ω

ΩE

· t
)
= fn(t) (17)

From Equation (16), we obtain as follows:√
Ω · ΩE

ρ
h0

( ρ

ΩE

· t
)
= h1(t) (18)

Therefore, we obtain the following:√
Ω · ΩE

ρ

dh0

(
ρ

ΩE
· t
)

dt
=

dh1(t)

dt
(19)

Rewriting Equation (19), we obtain as follows (Refer Appendix A):

dh0

(
ρ

ΩE
· t
)

dt
=

ΩE

ρ
·
√

ρ

ΩEΩ

dh1(t)

dt
=

√
ΩE

ρΩ

dh1(t)

dt
(20)
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From Equation (20), we obtain the following:

dh1(t)

dt
+ r

(
ρ

ΩE

)
h1(t) = f1(t) (21)

Then we obtain as follows:
dh0(t)
dt

+ rh0(t) = f0(t)
dh1(t)
dt

+
(

ρ
ΩE

)
rh1(t) = f1(t)

...
dhn(t)

dt
+
(

ρ
ΩE

)n
rhn(t) = fn(t)

(22)

where n = 1, 2, · · · .
From the above scaling method, we can indicate the self-similarity of process throughput

deviation [20]. We can then obtain the following after calculating hn(t).

hn(t) = exp(−dnrt)
[
Ω · d

]n/2
·hn(0)

+
[
Ω · d

]n/2∫ t

0

dt
′
exp(−dnr(t− t

′
)) · fn

0 (t
′
), ∀d ≡ ρ/ΩE, n = 1, 2, · · · (23)

Then, we set the throughput deviation of a cumulating process as S(hn). Therefore, S(hn)
indicates a power-law distribution [7, 20].

Definition 5.2. Power-law distribution of S(hn).

S[hn] ∼= r[Ω · d]n/2h−α[ρ/ΩE ]n

n , r > 0, α > 0 (24)

Definition 5.3. Following equation W n
0 ≡ dn · r

Tn(·) ≡ [Ω · d]n/2 · hn(0)
an ≡ [Ω · d]n/2

(25)

We rewrite Equation (23) as follows:

hn(t) = exp(−W n
0 (t)) · Tn(·) +

∫ t

0

dt
′
exp(−W0(t− t

′
)) · anfn(t

′
) (26)

Accordingly, the mean square is expressed by the following.

< |hn(t)|2 >=exp(−2W n
0 · t) < |Tn(0)|2 > + <

∣∣∣∣∫ t

0

dt
′
exp(−W n

0 (t− t
′
)a−1

n fn(t
′
))

∣∣∣∣2 >
+ 2 exp(−2W n

0 · t)
∫ t

0

dt
′
exp(−W n

0 (t− t
′
))a−1

n < Tn(0) · fn(t
′
) > (27)

Equation (27) indicates that the initial value is Tn(0), which has no correlation with fn(t)
at time later than t

′
> 0.

Therefore, we obtain as follows:

< Tn(0) · fn(t
′
) >=< Tn(0) > · < fn(t

′
) >

Thus, < fn(t
′
) = 0 >, then we obtain the following:

< |hn(t)|2 >=exp(−2W n
0 · t) < |Tn(0)|2 >

+ <

∣∣∣∣∫ t

0

dt
′
exp(−W n

0 (t− t
′
)a−1

n fn(t
′
))

∣∣∣∣2 > (28)
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Here random noise characteristics are indicated as follows.[
< fn(0) >= 0

< f η
n(t) · fη

′

n (t
′
) >= 2Dfδηη′ (t− t

′
)

(29)

where the followings are satisfied.

δηη′ =

{
1 : η = η

′

0 : η 6= η
′ (30)

where Df represents the intensity of random forces.
We can provide the following for a fluctuation under the equilibrium state [25].

< |hn(t)|2 >= exp(−2W n
0 · t) < |Tn(0)|2 > +a−1

n Df{1− exp(−2a−1
n ) · t} (31)

6. Spectrum Analysis of Throughput Deviations within a Process. We focus
on a cycle period as follows: In Figure 7, Tsi(t) indicates a cycle of period i, and Tρ(t)
represents a company’s fiscal year. Then, the relationship between Tsi(t) and Tρ(t) is
expressed as follows.

Tsi(t) =
1

hn(t)
(32)

When Tρ(t) ≡ freq, we refer to freq as the company’s period frequency.

Figure 7. Conceptual model of process cycle period and duration

Then, from the Wiener-Khinchin theorem, a power spectrum Shn(freq) of hn(t) to freq
is expressed by the following [24].

Shn(freq)
∼=
∫ ∞

0

cos(2πfρ · t)φhn(t)dt (33)

φτ (t) ∼=
∫ ∞

0

cos(2πfreq · t)Shn(freq)dfreq (34)

Then we obtain as follows:

Shn(τ) ≈ Df < |hn|2 > (35)

Here if a time constant exists in the time correlation function of fluctuation, we can derive
the following [24].

φhn(t) = Df < |hn|2 > · exp
(
− t

τn

)
(36)

Then, we substitute Equation (36) into Equation (33) for Shn(freq). Thus, we can obtain
the following after calculating Equation (33) (see Appendix B).

Shn(freq) =< |hn|2 > · Dfτn
(2πfreqτn)2 + 1

(37)

With respect to Equation (37), Equation (35), which provides a spectral correlation func-
tion of throughput, has a Lorentzian spectrum in the vicinity of the frequency of the
fluctuation (see Appendix B).
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If the time constant τn is proportional to τ−1
n , we can obtain the following. Here, if the

time constant τn is proportional to τ−1
n , we can obtain the following:

< Shn(freq) > =

∫ ∞

0

dτn
τn

· Dfreqτn
(2πfreqτn)2 + 1

< |hn|2 >

= Dfreq

∫ ∞

0

< |hn|2 >
(2πξn)2 + 1

· dξn
freq

, ∀ξn = freq · τ (38)

Here we calculate the average of Equation (38) with respect to the time constant τn
and the distribution of the power spectrum of hn(t). Then, Equation (38) indicates f−1

fluctuation.
From f−1 fluctuations in Equation (38), because the input process or the correlation

function spectrum of throughput has a Lorentzian spectrum in the vicinity of the fre-
quency of fluctuations, and because the time constant distribution of the time correlation
function has fluctuations between the manufacturer and the material supplier, the time
constant distribution is proportional to τ−1

n .
Then, if the distribution of τn is uniform, e.g., it equals the constant r, we can obtain

the following.

< Shn(freq) > =

∫ ∞

0

Dfreqdτn

(2πfreqτn)2 + 1
· rndτn < |hn|2 >

= Dfreq

∫ ∞

0

rnτn
(2πfreqτn)2 + 1

dτn· < |hn|2 >

= Dfreq

∫ ∞

0

rnξn
(2πfreqξn)2 + 1

· dτn ·
1

f 2
req

dξ· < |hn|2 > (39)

Equation (39) represents f−2 fluctuations.
Considering the above description, we consider a time constant distribution in the fol-

lowing cases.
(1) The distribution of time constant τn is proportional to τ−1.
(2) The distribution of time constant τn is uniform distribution.
Here (1) indicates f−1 fluctuations, and (2) indicates f−2 fluctuations. Thus, if a through-
put model can be described by Equations (22) − (26), we can better explain the charac-
teristics of f−1 or f−2 fluctuations. f represents the number of process cycles during a
period.

7. Numerical Simulation. Frequency represents lead time; it is important to determine
frequency. For example, Figure 8, Figure 9 and Figure 10 show numerical examples
of power spectral density versus frequency and represent the magnitude of throughput
deviations within a process at a certain range of frequencies. The similarity of the graph
shapes, which show power spectral densities at a certain frequency ranges, also indicates
self-similarity in the supply chain.
By setting a certain range of frequencies, i.e., setting a target lead time, spectral density

is maintained as low as possible. In other words, throughput deviations within a process
are maintained as low as possible.
By maintaining high-throughput deviations within a process in the supply chain system,

a company produces high benefits.
In Figure 8, the random intensity is 1, time constant is 0.5, and process spectral values

denote frequencies.
In Figure 9 and Figure 10, a random intensity is = 1, a time constant is 1, and process

spectral values show for frequencies.
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Figure 8. Power spectrum in
the production process (fre-
quency)

Figure 9. Power spectrum in
the production process (fre-
quency)

Figure 10. Power spectrum
in the production process (fre-
quency)

Figure 11. Flow production process

8. Flow Production Process. Figure 11 shows an example of a flow production process
– a process commonly employed in the production of control equipment. In this example,
the flow production process consists of six stages. In each step of the production process
(i.e., S1 − S6), materials are being produced as a supply chain system.

The direction of the arrows represents the direction of the production flow. In this
process, production materials are supplied through the inlet, and the end-product is
shipped from the outlet. We studied four production patterns, each of which consisted of
an asynchronous process (constructed by non-skilled workers) and a synchronous process
(constructed by skilled workers).

9. Numerical Example. We introduce an example of self-similarity.
Figure 12 and Figure 13 are the graphs which use the table data divided by 200 based

on the lead time. Therefore, we have 54× 4 = 216 data. We calculate the probability for
all cost rate deviations where in each table based on the lead time, WC represents the
labor cost that acts as a guideline. The unit of every cost data is yen/min (Table 2-Table
5). In Table 2-Table 5, each table has 54 data ((K1, S1)-(K9, S6)).

Figure 12 represents the normal distribution for the deviation of cost rate based on
the lead time, where the average is zero and the standard deviation is 0.118. Figure 13
represents the power-law distribution (solid line), which indicates the existence probability
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Figure 12. Normal distribu-
tion of the deviation of cost
rate

Figure 13. Power-law distri-
bution and approximate curve
(doted line)

Table 1. Descriptive statistics of the cost data

Mean 0.305
SD 0.036

Variance 0.019
Skewness −0.805
Kurtosis −0.482
SEM 0.45

Number of Data 15

on the vertical axis, shows the absolute value of the cost rate on the horizontal axis, and
indicates the approximate line (dotted line) calculated by MS Excel.
From Table 1, Jarque-Beta test (JB) is obtained as follows [26].

JB =
n

6

[
S2 +

1

4
(K − 3)2

]
=

15

6

[
(−0.805)2 +

1

4
(−0.482− 3)2

]
= 9.169 ∼= 9 (40)

where, n is the number of observations, S is the sample skewness, and K is the sample
kurtosis.
Regarding with a skewness and kurtosis, if JB is smaller than nine, the sample data

obey a normal distribution. JB test result has over 9 slightly. However, the value is
regarded as almost nine. Therefore, the sample data obey a normal distribution in Figure
12.

10. Conclusions. Regardless of the size of a supply chain system, a mathematical model
defined by Langevin-type stochastic differential equations is known to identify self-similar-
ity. In this study, we applied the mathematical model to the Langevin equation for
a supply chain system. The self-similarities of the supply chain were observed in the
numerical simulation. We also assume that the throughput deviation exhibits a normal
distribution. Moreover, we clarified that a supply chain system has f−1 fluctuations
when the time constant distribution of the time correlation function is a uniform Poisson
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Table 2. Cost table of six
workers at Test-run 1 (asyn-
chronous)
WC S1 S2 S3 S4 S5 S6

K1 60 80 80 100 80 80 80
K2 80 88 84 88 84 76 80
K3 40 80 104 100 88 88 104
K4 120 102 90 114 108 96 90
K5 90 90 120 108 96 90 90
K6 90 90 90 90 90 90 90
K7 120 160 160 240 160 168 160
K8 160 232 264 240 232 256 264
K9 120 112 112 120 112 112 112

Total 880 1034 1104 1200 1050 1056 1088

Table 3. Cost table of six
workers at Test-run 2 (syn-
chronous 1)
WC S1 S2 S3 S4 S5 S6

K1 80 80 96 80 80 80 80
K2 80 80 80 80 80 80 80
K3 80 80 80 80 80 80 80
K4 120 150 150 120 120 120 120
K5 120 120 120 120 120 120 120
K6 120 120 120 120 120 120 120
K7 160 160 160 160 160 160 160
K8 160 216 216 176 184 160 160
K9 160 160 160 160 160 160 160

Total 1080 1166 1182 1096 1104 1088 1080

Table 4. Cost table of six
workers at Test-run 3 (syn-
chronous 2)
WC S1 S2 S3 S4 S5 S6

K1 80 72 76 72 80 80 80
K2 80 72 72 72 80 80 80
K3 80 84 84 84 80 80 80
K4 120 78 66 66 120 120 120
K5 120 96 96 102 120 120 120
K6 120 108 108 108 120 120 120
K7 160 112 112 104 160 160 160
K8 160 176 176 160 160 160 160
K9 160 200 200 200 160 160 160

Total 1080 998 990 968 1080 1080 1080

Table 5. Cost table of six
workers at Test-run 4 (syn-
chronous 2)
WC S1 S2 S3 S4 S5 S6

K1 80 72 76 72 72 72 72
K2 80 72 72 72 72 72 72
K3 80 84 84 84 84 84 84
K4 96 78 66 66 78 78 78
K5 96 96 96 102 120 96 96
K6 96 108 108 108 108 108 108
K7 160 112 112 104 112 112 104
K8 160 176 176 176 176 176 176
K9 160 200 200 200 200 200 200

Total 1008 998 990 984 1004 998 990

distribution and has f−2 fluctuations when the time constant distribution of the time
correlation function is a uniform distribution.

With respect to potential energy, if a supply chain has potential energy, this potential
energy needs to be defined. Determining this definition of potential energy will be the
focus of future study.

In the analysis results of the cost rate data based on the lead time, we clarified that
the probability distribution exhibits a normal distribution. Furthermore, we clarified that
the probability distribution for the absolute value of the cost rate deviation based on the
lead time exhibits a power-law distribution.

We have demonstrated that self-similarity exists in the supply chain system. Regarding
the management strategy that leads to excessive production or to a state of excessive order
entries, we propose that it is possible to increase profit by adopting an ideal strategy.

In this study, the normal distribution of the cost rate deviation based on the lead time
is assumption.
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Appendix A. Conducting process of Langevin equation. From Equation (20), we
obtain the following:

dh1(t)

dt
=
[ΩE

ρ

]−1dh0

dt
=
[ΩE

ρ

]−1

[−rh0(t) + f0(t)] (41)

We generalize Equations (16) and (17), and we obtain as follows:

qhn−1

( ρ

ΩE

)
= hn(t) (42)

pfn−1

( ρ

ΩE

)
= fn(t) (43)

Then we obtain Equation (44) after rewriting Equations (42) and (43).

dh1(t)

dt
=
[ΩE

ρ

]−1

[−rq−1h1(t) + f0(t)] =
[ΩE

ρ

]−1

[−rq−1h1(t)]

=
[ΩE

ρ

]−1

p−1f1(t) = −
[ ρ

ΩE

]
rh1(t) +

[ ρ

ΩE

]
q · p−1f1(t) (44)

Here, we assume the following: [ ρ

ΩE

]
·q · p−1 ≡ 1

From Equation (44), we obtain as follows:

dh1(t)

dt
+
[ ρ

ΩE

]
rh1(t) = f1(t) (45)

where q and p satisfies Equation (46).[ ρ

ΩE

]
qp−1 = 1 (46)

We replace Equation (46) to Equation (47) for example.

q =

√
ΩΩE

ρ
, p =

√
ρ
Ω

ΩE

, ∀

(
p−1 =

√
ΩE

ρΩ

)
(47)

Then q represents a diffusion coefficient.

∂S

∂t
= D2∂

2S

∂x2
, D2 =

κ

ρc

(
D =

√
κ

ρc

)
(48)

Appendix B. f−1 Fluctuations of hn(t). We substitute Equation (12) to Equation
(9), and we obtain the following:

Shn(freq) =

∫ ∞

0

dt cos(2πfreq(t))Dreq < |hn|2 > exp

(
− t

τn

)
= Dreq < |hn|2 >

∫ ∞

0

exp

(
− t

τn

)
cos(2πfreqt)dt (49)
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where if (t/τn) = ξi, dt = τndξi. Then, we obtain Equation (50) from Equation (49).

STi
(freq) = Dreq < |hn|2 >

∫ ∞

0

exp(−ξi) cos(2πfreqξiτn)dξi

= Dreqτn < |hn|2 >

×
[− cos(2πfreqτnξi) + 2πfreqτn sin(2πfreqτnξi)

1 + (2πfreqτn)2
× exp(−ξi)

]∞
0

= Dreq < |hn|2 >
τn

1 + (2πfreqτn)2
(50)

Therefore, we can obtain Equation (13).
Here, if a time constant τn is proportional to τ−1

n , we can obtain the following:

< STi
(freq) > =

∫ ∞

0

dτn
τn

· Dreq · τn
(2πfreqτn)2 + 1

< |hn|2 >

= Dreq

∫ ∞

0

dξi
< |hn|2 >
(2πξi)2 + 1

· 1

freq
, ∀freqτn = ξi (51)

We can also obtain Equation (52) after calculating of Equation (51).

< STi
(freq) > = Dreq < |hn|2 >

∫ ∞

0

dξi
1

(2πξi)2 + 1
· 1

freq

= Dreq < |hn|2 >
∫ ∞

0

( 1

2π

)2
· 1

(ξi)2 + ( 1
2π
)2

· 1

freq

= Dreq < |hn|2 >
( 1

2π

){
arctan(2πξi)

}
· 1

freq
(52)


