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ABSTRACT. In this study, we verify that the production flow process is reasonable by
determining the phase difference in the gradient system of an autonomous decentralized
system. We set a target throughput for each work process, and workers attempt to main-
tain this target throughput. The working method is reasonable for the production process.
To analyze the production flow process, we use the phase difference in the gradient system
of an autonomous distributed system. Specifically, it is possible to synchronize processes
by maintaining a constant phase difference in the gradient system of an autonomous de-
centralized system. By achieving synchronization between processes, the entire process
plays a role in maintaining the target throughput.

Keywords: Production flow process, Gradient system, Synchronous process, Autono-
mous decentralized system, Potential

1. Introduction. Several studies have addressed the problem of productivity improve-
ment in industrial production processes [1, 2]. Moreover, various theories have been
applied to improve and reform production processes and increase productivity. In [3], an
analysis that uses the queuing model and applies a log-normal distribution to model a
system in the steel industry is described.

Several studies have reported approaches to shorten lead times [4, 5]. From the time of
product ordering, the lead time is dependent on the work required to prepare the system
for production.

We have reported that an analysis of the rate-of-return deviation for a certain equip-
ment manufacturer over the past ten years displays “power-law distribution character-
istics”. Because the power-law distribution reveals the existence of a phase transition
phenomenon, we expect that the rate-of-return deviation and the production system are
correlated in a manner that is mediated by the power-law distribution [6]. By performing
a data analysis, the relation between the rate-of-return deviation and production through-
put has been clarified to some extent. The “fluctuation model of rate-of-return deviation”
is self-similar and shows a fractal nature [7, 20]. Also, this power-law distribution char-
acteristic has a “fluctuating” nature during phase transition. For example, occurrence of
fluctuation is found at where the phase transition occurs at the point. Then, we have re-
ported on the self-similarity of these fluctuations and noted the f~! and f 2 fluctuations
[8]. We have also verified self-similarity in the system through experiments on the supply
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chain system, and have used the supply chain system to produce control equipment. In
total, nine workers were involved, and the production process was composed of six stages.
To compare the forms of production, we roughly conducted four patterns of asynchronous
and synchronous methods. In this report, we propose that it is possible to increase man-
ufacturing profits by adopting a management strategy that purposefully leads to a state
of excessive production or excessive order entries. This management strategy is ideal on
the basis of analysis of the cost rate of the production process.

Although the traditional approach to avoiding bottlenecks in production processes is
to use the theory of constraints [9], we have reported that the synchronization method
is superior for shortening throughput in production processes. This method requires
synchronization between processes [10].

In our previous study [11], we constructed a state in which the production density of
each process corresponded to the physical propagation of heat [20]. Using this approach,
we showed that a diffusion equation dominates the production process. In other words,
when minimizing the potential of the production field (stochastic field), the equation,
which is defined by the production density function S;(z,t¢) and boundary conditions,
is described by the use of diffusion equation with advection to move in transportation
speed p. The boundary conditions describe a closed system in the production field. The
adiabatic state in thermodynamics represents the same state [11].

With respect to the production flow system, generally, low volumes of a wide variety
of products are produced through several stages in the production process. This method
is good for producing specific control equipment such as semiconductor manufacturing
equipment in our experience. We have reported many research findings in this area. The
production flow process has nonlinear characteristics [12]. Moreover, we have made it
clear that the manufacture of products proceeds in multiple stages from the beginning of
production. Such volatility is encountered in every stage of manufacturing, and delays
in the production line propagate this volatility to the successive steps. A delay in the
production process is equivalent to a “fluctuation” in physical phenomena [13].

To achieve the production system goals, we propose the use of a mathematical model
that focuses on the selection process and adaptation mechanism of the production lead
time [14]. We model the throughput time of the production demand/production system
in the production stage by using a stochastic differential equation of the log-normal type,
which is derived from its dynamic behavior. Using this model and risk-neutral integral,
we define and compute the evaluation equation for the compatibility condition of the
production lead time. Furthermore, we apply the synchronization process and show that
the throughput of the production process is reduced [14, 15].

In accordance with this result, we show that Kalman filter theory, conventionally used
in state estimation problems in control theory, can be applied under an incomplete infor-
mation state. In addition, by applying a theory of ongoing assessment in real option, the
conditions that determine throughput rate are clarified and confirmed by numerical value
calculations [15].

In this study, using the phase difference in the gradient system of an autonomous
distributed system, we report that the production flow process is an excellent production
method. Specifically, the variation between processes is examined as the synchronism
between processes, which is regarded as the phase difference in the gradient system of
an autonomous distributed system. In our previous study, we applied offset time in
a joint model of an autonomous distributed system to the production process using a
diffusion equation for the propagation of production elements and same physical quantity
of propagation [11]. The present study extends to potential energy based on the offset
time.
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Further, from the obtained production flow process data, we introduce potential energy
and show that if the production process cannot maintain a synchronous status, the bilat-
eral symmetry of the potential function collapses. The synchronous process corresponds
to Test—run2 in the production flow process. In contrast, in the case of asynchronous
status, the bilateral symmetry of the potential function is maintained. An asynchronous
process corresponds to Test—runl in the production flow process. To the best of our
knowledge, the application of phase difference in the gradient system of an autonomous
distributed system has not been previously applied to the production process.

2. Distribution System and Diffusion Equation of the Production Process.
From Figure 1, we refer to the network capacity (i.e., a statically acceptable amount of
production) in an interprocess network (a production field) as R. An interprocess network
indicates a sequential flow from one process to the other after the completion of the current
process. Here assuming that the production density function for the i-th equipment is
Si(z,t), S;(z,t) is expressed by

[J(x,t)dt — J(x + dx,t)dt|R = [S;(x,t + dt) — S;(x,t)|Rdx (2.1)

where J is the production flow [11].

Next, we define the production flow as the displacement of a production density function
in the unit production direction. In other words, the production density function is
proportional to the cost necessary for production, and thus, it can be considered as the
production cost per unit production. Furthermore, because production leads to a return,
the production density function can be considered as a return density function

851 (l‘, t) 825’2 (l‘, t)

o - P (2.2)

where D is the diffusion coefficient, ¢ is the time variable, and z is the spatial variable.

This equation is equivalent to the diffusion equation derived from the minimization
condition of free energy in a production field, indicating that the connections between
processes can be treated as a diffusive propagation of products (refer to Figure 1) [11].

A model of the production process, which is connected in one dimension, is described
as follows. The process of production is indicated by the movement of production units
from one process (node) to another. This production flow is equivalent to transmission
rate, which is defined as the rate of data flow between connected nodes in communication
engineering. Accordingly, we formulate the production model in a manner similar to heat
propagation in physics. Thus, the production process is modeled mathematically using
a continuous diffusion type of partial differential equation consisting of time and spatial
variables [11].

Setting the network capacity (the available static production volume) to R in an inter-
process network (production field, equivalent to a stochastic field), we obtain the following:

[J()dt — J(X + do)dt|R = [S(t + dt) — S(t)|Rd (2.3)

where .J is the production flow and S is the production density.

In the present model, the production flow indicates the displacement of production
processes in the direction related to the production density. In other words, the production
cost per production is as follows:

Definition 2.1. Production cost per unit production

S
=-D— 2.4
/ ox (2.4)

where D is a diffusion coefficient.
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This equation is equivalent to the diffusion equation derived from the minimization
condition of free energy in a production field [11]. The connections between processes can
be treated as a diffusive propagation of products (refer to Figure 1). Please refer to our
previous paper for details [11].

As shown in Figure 2, X represents the production elements that constitute a unit
production and varies X — X at [t + dt]. In other words, the unit production varies by
exciting the external force and is the basis for revenue generation (an increase of potential
energy). Therefore, in the transition Sj(t,z) — S;i(t,z"), the production cost, which is the
cumulated external force, increases. The connections between production processes are
referred to as “joints”.

In the general idea of production flow, we define the joint propagation model at multiple
stages in the production process and the potential energy in the production field.

Thereafter, we can construct a control system, which increases the process throughput,
by calculating the gradient function in the autonomous distributed system. The gradient
function is described in the next section.

3. Production Flow Process. Figure 3 depicts a manufacturing process that is termed
as a production flow process. This manufacturing process is employed in the production
of control equipment. In this example, the production flow process consists of six stages.
In each step S1-S6 of the manufacturing process, materials are being produced.

The direction of the arrows represents the direction of the production flow. In this pro-
cess, production materials are supplied through the inlet and the end-product is shipped
from the outlet.
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FIGURE 3. Production flow process

3.1. Synchronous model.

Definition 3.1. The role of the synchronization model is to reduce the process throughput,
1.€.,

dS(t,z) = rS(t,z)dt + o S(t, z)dW (1) (3.1)

where S(t, x) represents the production density function as a function of the synchronous
status [10].

Synchronization minimizes the risk in the production process. To realize synchroniza-
tion, we set the throughput of each stage to the same value. Because we set the working
time for the workers in each work stage, there is no volatility in the working time between
processes.

Here, S(t, z) represents the production density function as a function of the synchronous
status when the equipment is manufactured. ¢ represents the manufacturing time. =z
represents the production process term when products are manufactured continuously. o
represents the volatility at each stage, and W (t) represents the Wiener process. Please
see our previous study on the detail analysis [10].

3.2. Asynchronous model.

Definition 3.2. When we use the asynchronous model to represent a dynamical system,
the throughput is not reduced.

dS(t,z) = C(t,z)S(t, z)dt + &S (t, z)dW (t) (3.2)

where C(t, z) represents the average working time of the total processes when the equipment
is manufactured using an asynchronous process [10].

O(t,x) = E[C(t,2)] = E

sup ||C’(t,x)||”] <00, p>2 (3.3)
t€[0,T]

where, C(t,x) exists uniquely. Therefore, it is clear that Equation (3.3) is established.
C(t,x) is the arbitrage-free term under the equivalent martingale measure.

Therefore, each stage of the production flow process can be represented by the Wiener
process. Because, the working time in each stage fluctuates stochastically, then, the
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relative production density S(t,z) is expressed as follows [21]:

t

S(t,x) = S(0,x) —/ S(u, )0 1y dW (t) (3.4)
0

That is, the volatility o* exists. Then S(t,z) is

S(t,z) = ‘;g g)) exp { /0 ud /0 o, u)du} (3.5)

Therefore, according to Equations (3.3) and (3.4), the solution of S(t,z) is as follows
(asynchronous model):

3(t,2) = §(1,0) exp { (TC - %#) Fy UCW(t)} (3.6)

dS(t,x) = r.S(t, x)dt + 0,S(t, z)dW (t) (3.7)
S(t,z) is a martingale with respect to F; [21].
Therefore, S(t,z) satisfies Equation (3.2) (asynchronous model). Please see our previ-
ous study on the detail analysis [10].

4. Results of Test—run.

4.1. Result of Test—runl. Test—runl is asynchronous process. Therefore, the through-
put at each step of Test—runl is different, the throughput of the entire stage becomes
stochastic. Moreover, the stochastic throughput, which is a function of the current time
and time remaining until the end of the stage, affects the performance of the entire system.
In Tables 2 and 3, we present data that validates our findings presented above.
Therefore, the ratio of the measured throughput to the target throughput is considered
as the drift term r¢ in Equation (3.7). The fluidity of the system is affected by the
throughput at each stage. In other words, because the manufacturing progress is affected
by bottlenecks, the drift term r¢ can be defined using the stochastic throughput [10].
Here the drift term r{ is

re — 4—64 (0.73) (4.1)
re = % (0.92) (4.2)

The required theoretical throughput for six pieces of equipment/day is computed in Equa-
tion (4.1). However, the actual throughput corresponds to 4.4 pieces of equipment/day.

Furthermore, we can use the same approach to compute the volatility of the throughput
at each stage. This average of volatility is given as follows:

1 o
o5~ 0.29 (: ~ ;a (;p)) (4.3)

Therefore,
Definition 4.1. The system throughput in this model (production evaluation model)
dS(t,x) = 0.735(t, z)dt + 0.295(t, z)dW (t) (4.4)
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4.2. Result of Test—run2. Next, we consider the case of Test—run2.

Test—run2 is synchronous process. In this case, the process is set in such a way that
each stage has the same throughput. Therefore, no risks are introduced as the process
progresses. Hence, in principle, the throughput at each stage satisfies the condition.
Moreover, because the manufacturing processes require synchronization, we can easily
define the “synchronization throughput” [10].

This system has essentially no risk. However, in Tables 4 and 5 we do not observe any
values of volatility equal to zero. Therefore, in Equation (3.1), the term o is equal to the
average volatility.

Here, r, o in Equation (3.1) are

L, 95
r= 5= 0.92
r? =1-10.06 = 0.94

r! and 7? are not much different. The volatility is

o =0.06
Therefore, the throughput model of this system is defined as follows.
Definition 4.2.
dS(t,x) = 0.92S (¢, z)dt + 0.06S (¢, z)dW (t) (4.5)

If the system approaches the synchronization, o — 1. If 0 — small data (o = 0.01),
this system becomes stationary.

For the case of a fully synchronized system, see Figure 4. In Figure 5, the integrated fi-
nite number of processing stages progresses depending on the synchronization throughput
of each stage (stationary system).

Specifically, the synchronous production system is the principle, and the processing
stages progress in a cycle, i.e., we set the throughput at 77, 75 and 73 in Figure 6, and
synchronize the stages in a cycle.

If Equation (4.6) is satisfied,

N

1

Nergsup re: (i=1,2,---,N) (4.6)
i=1

'S (T)

1.0

Sync. Process
stage

FiGURE 4. Perfect
synchronization sys- Moving direction
tem

FiGURE 5. Perfect synchro-
nization system
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a risk reduction system was constructed, where N = kM (k= 1,2,---, N) (k is a positive
integer). Because we set the working time for the workers in each work stage, there is no
volatility in the working time between processes.

Next, we applied the throughput model and used the results of the test runs to perform
numerical calculations. Our model shows that the throughput for each process at each
stage is satisfied. If Equation (6.3) is satisfied, r{ (i = 1,2,---, N) is a real number. This
process is a type of bottleneck synchronization. The bottleneck synchronization means a
recommendation from the famous “The theory of constraints (TOC)” [9].

L. If r{ # rf, 1 # j, synchronization of every stage.

2.

1 c
ﬁergsup ri, 1=1,2,--- N (4.7)
i=1

if Equation (6.3) is satisfied, the process is a type of bottleneck synchronization.
3. r{ =rf, 1 =7j < N, the synchronization of some stages.

Here Figure 6 can be considered for item 3.

Definition 4.3. Fvaluation of the relative production density function S’T(x) att="T.
dS(T,z) = r¢S(T, z)dt + o S(T, z)dW, (4.8)

In this case, the reduction of o} is a key point of building the system. Therefore, we
named to “Synchronization with preprocess” method as to reduce this o7.

5. Analysis of the Test—run Results.

e (Test—runl): Each throughput in every process (S1-S6) is asynchronous, and its
process throughput is asynchronous. Table 2 represents the production time (min)
in each process. The volatilities of K3 and K8 increases due to the delay of K3 and
K8 in Table 3. K3 and K8 of workers in Table 2 indicate the delay propagation
of working time through S1-S6 stages. Table 3 represents the volatility in each
process performed by workers. Table 2 represents the target time, and the theoretical
throughput is given by 3 x 199 + 2 x 15 = 627(min).

In addition, the total working time in stage S3 is 199(min), which causes a bot-
tleneck. Figure 8 is a graph illustrating the measurement data in Table 2, and it
represents the total working time for each worker (K1-K9). The graph in Figure 9
represents the volatility data for each working time in Table 2.
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TABLE 1. Correspondence between the table labels and the Test—run number
Table Number | Production process | Working time | volatility
Test—runl Table 2 Asynchronous process | 627(min) 0.29
Test—run2 Table 4 Synchronous process 500(min) 0.06
TABLE 2. Total production
time at each stages for each
worker (asynchronous) TABLE 3. Volatility of Table 2
WS | S1 | S2 | S3|S4|S5 | S6 K1|1.67|1.67|3.33|1.67|1.67|1.67
K1 | 15 (20 |20 | 25| 20| 20 | 20 K2|233| 2 (233 2 |1.33]1.67
K2 |20 | 22|21 (22|21 |19 ] 20 K3|1.67|3.67|3.33|2.33]|2.33|3.67
K3 |10 | 20 | 26 | 25 | 22 | 22 | 26 K4|067] 0 |[1.33| 1 |033] 1
K4 |20 | 17 | 15|19 | 18 | 16 | 18 Ks| 0 [1.67] 1 [033] O 0
Ks | 15| 15|20 | 18 | 16 | 15 | 15 K6| 0 0 0 0 0 0
K6 | 15 | 15 |15 | 15 | 15 | 15 | 15 K7|1.67 167 5 |1.67| 2 |1.67
K7 | 15|20 | 20| 30 | 20| 21 | 20 K8 |4.67| 6 5 |4.67]567| 6
K8 20|29 |33 |30 |29 | 32| 33 K9|0.33(0.33| 0 [0.33]0.33]0.33
K9 |15 | 14|14 | 15| 14 | 14 | 14
Total | 145 | 172 | 184 | 199 | 175 | 174 | 181

Flow production system

205

200
1995
190

/N

e

185
180 / \
175 __./

170
165

Volatility data

160

Measurment Time(min)

199

S1

S2 83 54 S5 S6

Manufacturing stage name

Ficure 8. Total production

time at each stage for each

worker

[~ J— [ & ¢ = T -
——

54 55

=11

Manufacturing stage name

Ficure 9. Volatility data at

each stage for each worker

e (Test—run2): The target time in Table 4 is 500(min), and the theoretical through-
put (not including the synchronized idle time) is 400(min). Table 5 represents the

volatility data of each working process (S1-S6) for each worker (K1-K9).

In Table 1, Test—run2 is a good method in throughput clearly than Test—runl, and
also that the volatility in the work (Test—run2) is less than the volatility (Test—runl).

6. Applying Offset to the Production Flow Process. We represent the offset time
between processes i and j as well as the traffic signal control as follows.
difference corresponds to the standard deviation as a new suggestion. From Figure 12,
we can derive the following:

o _
dt

Wy

The phase

(6.1)
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TABLE 4. Total production
time at each stage for each

worker (synchronous) TABLE 5. Volatility of Table 4

WS | S1 | S2 | S3|S4|S5 | S6 Ki| 0 (1.33] 0 (0] O |O

K1 |20 |20 |24 |20 | 20| 20 | 20 K2| 0 0 0 [0]0.67]0

K2 |20 |20 | 20|20 | 20 | 22 | 20 K3| 0O 0 0 |0} 0 |0

K3 120 |20 |20 |20 | 20 | 20 | 20 K4|167 (167 0 (0] O |O

K4 120 | 25| 25|20 | 20 | 20 | 20 K| O 0 0O (0] O |O

K5 |20 |20 |20 |20 | 20 | 20 | 20 K6| O 0 0O (0] O |O

K6 |20 |20 |20 |20 | 20 | 20 | 20 K7 0 0 0 (0] O |0

K7 120 |20 | 20|20 | 20 | 20 | 20 K81233(233(0.67(1] 0 |0

K8 |20 | 27 | 27 | 22 | 23 | 20 | 20 K9| O 0 0 (0] O |0
K9 |20 |20 |20 |20 | 20 | 20 | 20
Total | 180 | 192 | 196 | 182 | 183 | 182 | 180

OTOTOTE

Process ‘{ Process Process Process @ @
qr(i)

qi qj

Synchronizing

FIGURE 11. Transition of pro-
duction stage

Ficure 10. Connection of
production system cascaded
by N processes

From Equation (6.1),
d
dt
If wy = wj, d/dt(0; — 6;) = 0. Here the relationship between the offset T;; and phase
difference (0; — ;) is

(01 - 0]) =W; —Wj (62)

0, — 0
Definition 6.1. Offset T;;
o(i, j)
T, = o (6.4)

where ¢(i,7) is the phase difference and w; is the target throughput (read time).

To address these considerations, Yuasa and Ito have proposed a structural theory. We
have attempted to apply the proposed method to a production system in accordance with
this theory [18, 19].

Here we briefly summarize the structural theory of the autonomous distributed system
proposed by Yuasa and Ito.

The system model for the process i is

db;
P fi(0ir, 052, 033, - - -, Oim) (6.5)
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where 6;1, 0,2, -, 0;,, is the phase of process coupling with 6;.
The matrix A between the state of the phase difference ¢ = (1, @2, -, ¢n) and the
state 0 = {01,0,,---,0,} is assumed as follows:

Assumption 1.
p =A% (6.6)
where ¢ indicates the transposed matrix and A is the “incident matrix” in graph theory.

From Equations (6.5) and (6.6),

dyp
L = Atf 6.7

We obtain the dynamic model of the state difference .
For this discussion, let ¢ be autonomous; that is, the necessary and sufficient conditions
under which A*f satisfies only the function ¢ are as follows [17, 18, 19].

Lemma 6.1. Any i, j

" 0pi <= Op;
] (6.8)
— 00, kz:; 00,

To prove this lemma, € is defined in an n-dimensional space. However, ¢ in an (n — 1)-
dimensional space is defined as follows:

¢ = Z 0; (6.9)
i=1
¢, which is orthogonal to space ¢, does not become an element of A*f; that is, A*f does
not become a function of ¢.
Definition 6.2. Variable of state p;, difference between 0;, and 0;
oi, = 0i, — 0; (6.10)

The necessary and sufficient conditions under which ¢ satisfies the gradient system are
as follows:

dp;

i = fi(pi)
Qi = Z(ezk —0;) (6.11)

The potential function to be formed in space ¢ is as follows:

Vi(p) = Z/fi(%)d% (6.12)

The potential structure is derived from the sum of the local potentials. Therefore, in
equipment production, such as in a production flow system, each process (subsystem)
has a unique potential structure. In addition, each process model becomes a nonlinear
structure by the interaction between processes. The total potential is the sum of the local
potentials of each process, and the structure of the autonomous distributed system can
only be unique when the total potential is the sum of the local potentials [18, 19].

Here we describe the basic production model, such as the production flow process
shown in Figure 3. According to form of the phase, such as those Figure 12 and Figure
13, which are related to process size and manpower ability within a process, each process
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demonstrates phase difference. If this phase difference can be measured in Figure 13, the
offset between the processes can be defined by Equation (6.4).

On the basis of the above gradient system, the production process is constructed as
follows.

Assumption 2.

do;  SWP(6;)
A B . 1
o 50, + w; (6.13)

where W/ is as follows:
qri) t+ G5 . .
WE0) = |5 (F ) Jeos{66i,) ~ DG i)} (6.14)
13
where ¢r(;) indicates the production volume of the forward process and ¢; indicates the
production volume of the next process after process i.

¢(i,j) = 0; — 0; (6.15)
Therefore, we can construct the gradient system as follows:
db); qri) 4\ . o .
== 2p(FETH) Jsinf66i,) - DG (6.16)
where, whenever ¢(i,j) = D(i, ), W? obtains its minimum value, and we obtain
db;
@i _ 6.17
it (6.17)
Definition 6.3. D(i,j)

D(i,j)= ———  w; - —== (6.18)
4@y + ¢ ' P

where gy is the throughput per unit process of process f(i), q; is the throughput per unit
process of process i, q; is the throughput per unit process, and p is the standard working

time of each process.

Definition 6.4. Average offset time value

Average D(i,j) = {maX(L(i,j)) ;_ min(L (i, j)) } (6.19)
. 0 i =¢q; =0
Dd = Loy (Oues) (620
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We consider the one-way propagation.

D(i,j) = D(ji) (6.21)
At this time,
| D |
o; = 6.22
|Dy| + | Ds| ( )

o) = [{0.— €6, G, } {0 - €6, G }] (6.23)
where if we assume that the production flow and volume do not have sudden fluctuations,
the throughput converges to the local minimum point of the potential.

In other words, the phase difference ¢(i,j) converges to D(i,j). Therefore, if we set
the value of D(i, j), we can estimate the degree of process synchronization.

dl‘i
P foi (i yi) + fi
dyi
o Fyi(wis vi) + g3 (6.24)
The system model for the process i is as follows [18]:
dz;
d—i = —aiy; + ai(ry; —17) + fi (6.25)
dy;
d_yt = a;z; + iyi(rl, —r?) + gi (6.26)

where r? = 2? 4+ y2.

Equation (6.26) represents the model including the interaction between z; and y;. As
can be seen in Figure 12, and Figure 13, each process has an initial phase difference as
we run the unit process. By using polar coordinates for Equations (6.25) and (6.26), we
obtain the following:

dr;
_dq; = wiri(r} — r}) + fici + gisy (6.27)
db; 1 .

= a; — _(fzsz — giCi), v S; = S1n 92', Cc; = COS 91 (628)

% N T
The processes are connected by cascade coupling from process (1) through (n), each
process having independent throughput, as can be seen in Figure 10. Here, the dynamic

throughput model for the process is used by the oscillation model for autonomous work
[18].

dg;it) = w; (6.29)
Here we set the phase difference between ¢ and j to ¢;;. We obtain the following:
ij=0; —0; (6.30)
Therefore,
dag;,j _ d(eid; 0;) _ (ai — a;) — %(fz'sz' — gi¢i) + %(fjsj — 9i¢)
= (a; — a;) + (i ) (6.31)
where

1
(i) = —(fis5 — 95¢5) — r_z_(fisi — giCi) (6.32)

1
T
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Here Equation (6.30) represents the autonomous distributed system. From here, we can
construct a gradient system [18].

Now, according to Equation (6.14) and by applying Yuasa’s potential function, we can
obtain the following [18]:

V(i) = Foi; + B(—4C cos p; j + cos 2¢; ;) (6.33)
Therefore, the gradient system is as follows:

dei; OV (pij) : .
dtj =— a%’jj =—F— B{4C’ sin ¢; j — 2sin 2g0i,j} (6.34)
where F' = Constant, C is a synchronizing parameter, and B is a system parameter.
The parameters C' and F significantly affect the shape of the function V' (¢; ;). Similar to

Equation (6.13), the gradient model is as follows:

db; oV (6;)
i _ 6.3
) (6:35)
Then Equation (6.35) is rewritten as follows:
db; . o : o
o T wWis [Bi{élCi sin(p;; — D(4,7)) — 2sin2(g; ; — D(Z,j))}
= w; + Bi{ ~4Cisin(py; — D, ) +2sin 2y — D, /) | (6.36)

Similar to Equations (6.35) and (6.36), we can control the stable phase difference by
varying the value of Cj.

Based on Yuasa’s reports, the interactions between f; and g; in Equation (6.29) have
certain limitations and are deeply involved with the coefficient of the potential function.
If Equation (6.31) is equivalent to Equation (6.34), we can obtain the following:

(a; —a;) + ®(pi;) = —F — B{4C'sin p; j — 2sin2¢; ;} (6.37)
From Equation (6.32), ®(¢; ;) is described as follows:
1 1

(I)(Qpi,j) = —(f] sin 9]‘ — g5 COS 9]) - _(fz sin 92 — g; COS 92) (638)
] r;

If we choose values for f; and g; appropriately, the function ®(y; ;) includes (B, C) [18, 19].
Therefore, if we set the potential function and system parameters (F, B, C) in Equation

85

LY,

I
¢ij = 0i = 0;

FIGURE 14. Productipn flow FIGURE 15. Phase difference
process by polar coordinate of process i and process j
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TABLE 6. Values of F, B, C for parameter 1-8 in potential function

| [ Table 7 | Table 8 | Table 9 | Table 10 | Table 11 | Table 12 | Table 13 | Table 14 |

F| 0.01 0.2 1 1.5 5.5 0.01 0.01 0.01
B 1 1 1 1 1 10 1 1
C 1.5 1.5 1.5 1.5 1.5 1.5 0.01 1.5

(6.33) appropriately, we can show the potential function in Figure 16, Figure 17, Figure
18, and Figure 19.

7. Numerical Results. We represent the variation status of workers in the stages using
the potential function. According to Equation (6.33), we use Equation (7.1) for the
numerical calculation. Equation (7.1) is a potential function that includes the constant
term F. Figures 16-23 show the potential function with constant terms F, B, and C (Table
6). Tables 7-14 show the parameters of F, B and C versus D.

If we choose a significantly large value, the process deviates from synchronization, i.e.,
if |[F| > 3v/3B, the process cannot be synchronized [18]. We refer to Yuasa’s report for
the numerical simulations. From Figures 16-23, it is evident that F = 0.01 does not
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TABLE 7. Parameter value of F, B, C, D (1-25) in potential function

T 2 3 1 5 6 7 8 9 10 il 2
F[0.01] 001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Bl 1 1 1 1 1 i i 1 1 1 1 1
cl 1 1 1 1 1 i i 1 1 1 1 1
D[ —x | —(11/12)7 | —(10/12)x | —(9/12)7 | —(8/12)7 | —(7/12)7 | —(6/12)7 | —(6/12)7 | —(4/12)7 | —(3/12)7 | —(2/12)7 | —(1/12)7

13 14 15 16 17 13 19 20 21 22 23 24 2 |
F[0.01] 001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0l 001
B| 1 1 I i i I I I I I 1 1 i
Cl 1 1 1 1 1 1 1 1 1 1 1 1 1
D[ 0 | (i/I2)x | (2/12)x | B/12)x | (4/12)x | (/12)x | (6/12)7 | (7/12)x | (8/12)x | (9/12)x | (10/12)x | (11/12)x | =

TABLE 8. Parameter value of F, B, C, D (1-25) in potential function

1 2 3 1 5 6 7 8 9 10 11 12
F 02 0.2 0.2 02 02 02 02 02 0.2 0.2 0.2 0.2
B[ 1 T T 1 1 T T T T T T T
Cl1 T T 1 1 T T T T 1 1 1
D[ —7 | —(11/12)7 | —(10/12)7 | —(9/12)7 | —(8/12)7 | —(7/12)7 | —(6/12)7 | —(6/12)7 | —(4/12)7 | —(3/12)7 | —(2/12)7 | —(1/12)7

13 14 15 16 17 18 19 20 21 22 23 24 2 |
F[02 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2
B[ 1 i i 1 1 i i i ] ] 1 1 ]
Cl1 i i 1 1 i i i ] ] 1 1 1
D[ 0 | (I/1)x | /127 | B/12)x | @/12)x | 6/12)x | (6/12)7 | (7/12)x | 8/12)7 | (9/12)x | (10/12)x | (11/12)7 | =

TABLE 9. Parameter value of F, B, C, D (1-25) in potential function

1 2 3 4 5 6 7 8 9 10 11 12
F| 1 1 1 1 1 1 1 1 1 1 1 1
B| 1 1 1 1 1 1 1 1 1 1 1 1
Ccl|1 1 1 1 1 1 1 1 1 1 1 1
D | (/197 | 0/ | _©/107 | /107 | (7107 |6/ | _6/10x | (/17 | —G/10r | @/ | (/127

13 14 15 16 17 18 19 20 21 22 23 24 25
F| 1 1 1 1 1 1 1 1 1 1 1 1 1
Bl 1 1 1 1 1 1 1 1 1 1 1 1 1
Ccl1 1 1 1 1 1 1 1 1 1 1 1 1
D[ 0| (1/1r | @/12r | 3/1D)x | (4/12)x | G/12)r | 6/12) | (/127 | (8/12)x | (9/12)x | (10/12)x | (11/12)7 | =

TABLE 10. Parameter value of F, B, C, D (1-25) in potential function

1 2 3 4 5 6 7 8 9 10 11 12
F|15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Bl 1 1 1 1 1 1 1 1 1 1 1 1
Ccl1 1 1 1 1 1 1 1 1 1 1 1
D[« | _(11/12)7 | —(10/12)7 | —(9/12)7 | —(8/12)7 | —(7/12)7 | —(6/12)7 | —(5/1D)7 | —(&/12)7 | —(B3/12)r | —(2/12)7 | —(1/12)7

13 14 15 16 17 18 19 20 21 22 23 24 25 ‘
F|15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Bl 1 1 1 1 1 1 1 1 1 1 1 1 1
Ccl1 1 1 1 1 1 1 1 1 1 1 1 1
DI 0| (I/197 | /127 | /107 | /12x | 6/12)7 | 6/127 | (/127 | (8/12)7 | (9/12)7 | (10/19)7 | (/1) | =

affect the shape of the potential function. However, F = 0.2 or more affects the shape of
the potential function, and the symmetric potential function collapses. In other words,
the production process cannot maintain the synchronous status. However, B does not
affect the symmetric potential function significantly. C also does not affect the symmetric
potential function; however, the stabilization period is shortened by setting a smaller
value, i.e., C = 0.01.

Ve =F x D+ B x (=4 x Ccos(D) + cos(2D)) (7.1)

8. Conclusions. The phase difference between stages in a process corresponds to the
standard deviation of working time. When the phase difference is constant, the total
throughput can be minimized. We show that a synchronous process can be realized by
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TABLE 11. Parameter value of F, B, C, D (1-25) in potential function

T 2 3 1 5 6 7 8 9 10 il 2
F 55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
B[ 1 1 1 1 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1 1
D[ —r | —(11/12)7 | —(10/12)7 | —(9/12)7 | —(8/12)7 | —(7/12)7 | —(6/12)7 | —(5/12)7 | —(4/12)7 | —(3/12)7 | —(2/12)7 | —(1/12)7

14 15 17 18 19 20 21 22 23 2 |2

F 55 55 5.5 55 55 5.5 5.5 55 55 55 55 55 |55
B[ 1 I I 1 1 I I I I I 1 1 I
Ccl1 1 1 1 1 1 1 1 I 1 1 1 1
D[ 0 | (/127 | /127 | B/12)r | (@/12)x | /1) | (6/12)7 | (7/12)x | 8/12)x | (9/12)« | (10/12)x | (11/12)7 | =

TABLE 12. Parameter value of F, B, C, D (1-25) in potential function

‘ 1 2 3 4 5 6 7 8 9 10 11 12
F|0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B| 10 10 10 10 10 10 10 10 10 10 10 10
C| 1 1 1 1 1 1 1 1 1 1 1 1
D| —x | —(11/12)r | —(10/12)7 | —(9/12)7 | —(8/12)7 | —(7/12)x | —(6/12)7 | — (/127 | —(@/12)7 | —(3/1D)7 | —(2/10)7 | —(1/12)=
‘ 13 14 15 16 17 18 19 20 21 22 23 24 25 ‘
F |0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B| 10 10 10 10 10 10 10 10 10 10 10 10
C 1 1 1 1 1 1 1 1 1 1 1 1 1
D 0 (1/12)7 (2/12)m (3/12)m (4/12)m (5/12)m (6/12)m (7/12)m (8/12)m (9/12) | (10/12)7 | (11/12)7 | =
TABLE 13. Parameter value of F, B, C, D (1-25) in potential function
[T 2 3 1 5 6 7 8 9 10 11 2 \
F10.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B| 1 1 1 1 1 1 1 1 1 1 1 1
C10.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
D| —n | —(11/12)r | —(10/12)7 | —(9/12)x | —(8/12)7 | —(7/12)x | —(6/12)7 | —(/12)7 | —(4/12)x | —(3/12)7 | —(2/12)x | —(1/12)7
\ 13 14 15 16 17 18 19 20 21 22 23 24 25 |
F |0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Bl 1 1 1 1 1 1 1 1 1 1 1 1 1
Clo0i] o0l 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01_[0.01
D| 0 | (I/12)x | @/A2x | 3/12)x | 4/12)x | (/12)x | (6/12)x | (7/1D)x | (8/12)x | (9/12)x | (10/12)x | (11/12)x | =
TABLE 14. Parameter value of F, B, C, D (1-25) in potential function
[]1 2 3 i 5 6 7 8 9 10 i1 2 \
F|0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Bl 1 1 1 1 1 1 1 1 1 1 1 1
C| 15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
D[ —7 | —(1/12)7 | —(10/10)7 | —(0/10)7 | /107 | —(7/12)x | —6/12)7 | (/127 | —(3/12)7 | —(3/12)7 | — (/127 | (/127
‘ 13 14 15 16 17 18 19 20 21 22 23 24 25 ‘
F |0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B 1 1 1 1 1 1 1 1 1 1 1 1
Cl| 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
D] 0 | (/12)x | /127 | B/ | @/12)x | /1) | 6/12)x | (7/12)x | &/12)x | (9/12)x | (10/12)x | (11/12)7 | =

the gradient system. To achieve autonomous synchronization in the individual stages of
a process, it is most important to maintain the target throughput that has been set for
each stage of the process.

Using actual production flow system data, we identified synchronous and asynchronous
processes. If parameter F > 0.2, the symmetric potential function collapses. The shape
of the potential function is not affected by B = 10. In addition, C does not significantly
affect the symmetric potential function; however, the stabilization period is shortened.
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