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ABSTRACT. Bottlenecks in production processes often result from worker volatility or
delivery delays caused by other companies. The theory of constraints states that synchro-
nizing the bottlenecks may improve the throughput of the process. However, the standard
in physical restraint is not quantitatively shown in the production system. In this study,
we propose the quantitative use of a Riemannian manifold to improve the throughput of
a production flow system. We present a stochastic throughput model for producing the
propagation necessary to measure synchronization. We also introduce a Fisher infor-
mation matriz to specify volatility. We verify this method via a dynamic simulation of
a production flow system. Finally, we present the synchronous and asynchronous data
obtained using the production flow system.

Keywords: Riemannian manifold, Fisher information matrix, Diffusion process, Lange-
vin equation, Production process

1. Introduction. Based on mathematical and physical understandings of production
engineering, we are conducting research aimed at establishing an academic area called
mathematical production engineering. As our business size is a small-to-medium-sized
enterprise, human intervention constitutes a significant part of the production process,
and revenue can sometimes be greatly affected by human behavior. Therefore, when
considering human intervention from outside companies, a deep analysis of the production
process and human collaboration is necessary to understand the potential negative effects
of such intervention.

With respect to mathematical modeling of deterministic systems, a physical model of
the production process was constructed using a one-dimensional diffusion equation in 2012
[1]. However, many concerns that occur in the supply chain are major problems facing
production efficiency and business profitability. A stochastic partial bilinear differential
equation with time delay was derived for outlet processes. The supply chain was modeled
by considering as time delay [3]. With respect to the analysis of production processes in
stochastic systems based on financial engineering, we have proposed that a production
throughput rate can be estimated utilizing a Kalman filter based on a stochastic differen-
tial equation [2]. We have also proposed a stochastic differential equation (SDE) for the
mathematical model describing production processes from the input of materials to the
end. We utilized a risk-neutral principal in stochastic calculus based on the SDE [4].

With respect to the analysis of production processes based on physics, we have clarified
that phenomena such as power-law distributions, self-similarity, phase transitions, and
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on—off intermittency can occur in production processes [5, 6, 7, 8, 9]. On the other hand,
there is the famous theory of constraints (TOC) that describes the importance of avoiding
bottlenecks in production processes [10]. Small fluctuations in an upstream subsystem
appear as large fluctuations in the downstream (the so-called bullwhip effect) [13]. The
bullwhip effect generates a large gap between the demand forecasts of the market and
suppliers. Large fluctuations can be suppressed by the following mechanisms.

(1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

(2) Sharing the demand information and performing mathematical evaluations.

(3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear
vibration theory).

(4) Basing the inventory management approach on stochastic demand.

When using manufacturing equipment, delays in one production step are propagated
to the next. Hence, the use of manufacturing equipment itself may lead to delays. The
improvement of production processes was presented that the “Synchronization with pre-
process” method was the most desirable in practice using the actual data in production
flow process based on the cash flow model by using the SDE of log-normal type [11]. In
essence, we have proposed the best way, which is a synchronous method using the Vasicek
model for mathematical finance [12]. Then, the supply chain theme, which was a time
delay in the production processes, was proposed for the throughput improvement based
on a stochastic differential equation of log-normal type [13].

In this study, we investigate the use of a Riemannian manifold for modeling a production
system. We observe that a production process denotes a diffusion process in a manner
similar to that of the physical phenomenon. Based on the theory of constraints (TOC),
one method for optimizing a production system is to synchronize the bottlenecks in the
system. These bottlenecks may result from worker volatility or delivery delays caused by
other companies. Synchronizing the bottlenecks tends to improve the process throughput.
The TOC generally requests the improvement cycle toward the throughput (or lead time);
this shortens the bottleneck. However, the TOC does not consider standard physical
constraints, which serve as quantitative guidelines for production systems. In this study,
we develop a throughput model for a production flow system using a Riemannian manifold,
which is easier to implement than stochastic modeling methods. This model is derived
from a stochastic throughput model for producing the propagation necessary to measure
synchronization. We also introduce a Fisher information matrix to specify volatility. To
validate the new method and clarify the synchronization processes, we perform a dynamic
simulation of a production system. We also present the real synchronous and asynchronous
data obtained from the production flow process.

2. Production Systems in the Manufacturing Equipment Industry. The produc-
tion methods used in manufacturing equipment are briefly covered in this paper. More
information is provided in our report. More information is provided in our report [5]. This
system is considered to be a “Make-to-order system with version control”, which enables
manufacturing after orders are received from clients, resulting in “volatility” according to
its delivery date and lead time. In addition, there is volatility in the lead time, depending
on the content of the make-to-order products (production equipment).

A manufacturing process that is termed as a production flow process is shown in Figure
2. The production flow process, which manufactures low volumes of a wide variety of
products, are produced through several stages in the production process. In Figure 2, the
processes consist of six stages. In each step S1-S6 of the manufacturing process, materials
are being produced.
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The direction of the arrows represents the direction of the production flow. Production
materials are supplied through the inlet and the end-product is shipped from the outlet
[11].

3. Mathematical Model of a Production Flow System Using a Riemannian
Manifold.

3.1. Equation of harmonic mapping. The equation of the harmonic mapping, which
is an important theme of differential geometry, is decscribed as follows.

Definition 3.1. M is a Riemannian manifold. As the harmonic map f is a stationary
point, the energy functional E(f) is derived as follows:

1
B(H) = [ SldrPs, )
For a local coordinate system of M to (xy, 2, -+, %) and (yi,y2, -+ ,yn), the Rie-
mannian manifold is defined as follows:
ij=1 ij=1

If an inverse matrix is written as (g;;) and (h;;) to (¢”) and (h¥), respectively, then with

respect to the matrix (y1, 42, -+, ¥n), a Christoffel symbol to NT'}; is written as [24]
1< {ah- Ohiy,  Ohi }
N1k kl gl il iJ
'Y ==Y h + - (3)
72 ; yi  dy; Oy
In the same manner of Equation (3), we establish MFZ- with respect to (x1, 29, - ,Tm)

of g.
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We establish Laplace operator’s A, of (M, g) to

m - 82 m a
A = ij — Mpk _Z 4
g 1]2::19 {axzﬁx] — Y Sxk } ( )
Here, the mapping f using a local coordinate system,
f:(f17f277fn)7 flzylof (5)
fi:fi(f17f27"'7fn) (6)
From Equations (5) and (6), the equation of harmonic maps is
@ Oft Of
Ay f* MNTE — =0, k=12, 7
gf +i];:1.g Zj(f)al'k al‘l ) ) “y , ( )

Equation (7) is a quasi-linear second-order elliptic type.

3.2. Diffusion equation for production processes. Figure 3 shows the direction of
production flow from ¢ through h. Each of the items ¢, j, and h has different manifolds,
and each production pathway also has a different manifold. Figure 4 shows the propaga-
tion path in the Riemannian space, i.e., this figure represents the connection of the unit
production process. The Riemannian manifold is equal to the sum of the differentiable
manifold and distance.

Production stage

gi ii J)
gl (x)

@ /QY Sij
g"(x) gl (x)

FIGURE 3. Generalized prop- Ficure 4. Unit propagation
agation connected in Rie- path in Riemannian space
mannian space

Definition 3.2. Laplace-Beltrami operator

£1w) == (gf—a” Y ag}ff)) ®)

2,] i

where [g7] denotes an inverse matriz of the Riemannian metric [g;;], which is the inner
product of each tangent space of the differentiable manifold.

We now introduce a dual system of production stages. Figure 4 shows a unit propaga-
tion path in the Riemannian space.

Af = —div(gradaf) + Z b0, f (9)

where 0 is an element of the flow velocity vector and indicates that b = (b, b? ---  b®).
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If an external force (control force) does not work, each process element will converge
to a uniform solution; thus, the finished product will not have a set deadline. In other
words, this indicates a product with a natural timeline of production.

0S(z,t)
ot

The left term in Equation (10) saves the total load »_, .o, p S(2,t). Thus, the corre-
sponding load-balancing solution is given as follows:
Q Z S(.’L’, t)
S==——" 11
Q2 x D] (11)
Monotonically decrease the square error > S(z,t) — S.
The saving of total load is as follows:

= LS = div(gradgS) (10)

/ div(gradeS(z,t))dr = —/ LS(z,t)dx =0 (12)
M M
Zasxt ~S L5, t) = (13)
ueV ueV

LS(z,t) has different metrics (average and volatility) that also refer to the Riemannian
metric on each process and transport function:

A3, (%ﬂt—s) 2Z<cost ) S (14)

dt U]

uelU

where |U| denotes the size of the vertex (production stage) and cost = )" . /(u,0) denotes
the total load of the system.

e

Equations (15) and (16) denote the situation of Figure 4.
div(X) = Z@iXi, gradgf = Zgijajfai (16)
i ij
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Generally, Equation (17) denotes a production flow in S(u,t).

85 (u, ) = £5(nt) =~ Y g(2) [3 S(u, t) Za i 35 (u, t)] (17)

ot oxtorI

3.3. Throughput model for a generalized production system. We presented the
stochastic throughput model in our previous study as [11]:

aC (¢, 1) = [a( )806()‘; .t +D(@%] ot

N

+ ) 0i(x)Cx, t)OW(x, 1) —1—200 VOWE (x,1) (18)

=1 k=1

Then, Equation (18) can be rewritten as follows:

OC (w,t) = LC(x,t)dt + Y 9(x)C(x, )OWg(w,t) + > of (x)0Wg (x,t)  (19)

where

l\DI»—t

zzla (x,t) 189+ZB (20)
ij

Equation (20) indicates an infinitesimal generator under the measure with no risk. When
a¥(z,t) and B*(x,t) are derived as spatial elements, Equaiton (20) can be utilized as the
stochastic throughput model [4, 12]. Then, we rewrite Equaiton (20).

) 11 0
ﬁ——zgj ax 5 —) g («T)% (21)
m

2

where [¢"] indicates a reverse matrix of Riemannian metrics [g;;].

Definition 3.3. Connection matriz T';j;
= Z ghkl“ijh (22)
h

Then we obtain as follows [24]:

0igin = Lijn, 0; = (23)

ox?
Therefore, we rewrite as follows:

o 2 o 0
—Zg] <8xi8xj a - Fij%) (24)
Z’]

Z ghk g (AZ]h + 1Ajz'hj) (25)

where

where T';;, indicates the Levi-Civita connection matrix [24].
Therefore, we obtain

i .0
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Let the metrics of each process, including the throughput, lead time, production density,
and weight, be equal to w(u,v).
We represent the production model be as follows [1]:
0S(u,t)
ot
Equation (27) is represented as a diffusion equation.
Then, let the operator of stochastic model as follows:
L = div(gradgC) (28)
Here, we represent the mathematical model on x € R, and ¢t € R, as follows:

oC (x,t) D82C’(x,t) B U@C’(x,t)

= —LC = div(gradsC) (27)

T 527 B + 04C(x,t)By(x,t) + o9 Bo(z, ) (29)
where, when we put Wy(z,t) and Wy(z,t) to Wiener process, we obtain
OWy(z,t) oWy (x,t)
ot d(l‘a )7 ot O(mv ) (30)

Therefore, from the above analysis, Equation (19) becomes:

2
aC@J):_Daggi)—umg?” 0t + 04C (2, 8)Ba(x,t) + 00Bo(z,1)  (31)

Further, we employ an eigenvalue and eigenfunction using Green’s theorem and Equation
(31) then becomes:

dO(t) = (1) Cs () dt + oy Ci()dWiE) + opdWi(t), i=1,2,--- (32)

where Equation (31) has not duplication eigenvalues.
Moreover, we omit the subscript 7 for simplicity.

dC(t) = u(t)C(t)dt + o4C (t)dWy(t) + oodWs(t), i=1,2,--- (33)
where the mathematical model is denoted as a stationary system with external force.
dC'(t
O _ amew + B (349)

3.4. Evaluation of production flow system using Fisher matrix. We evaluate in
6 processes and 9 workers configured as shown in Figure 7.

Ag”uu = gii’Ujj — g”u“ (35)
Equation (35) denotes a discrete representation of d;g%(z) of the second term in Equation
(21).

Lfn) == 30 " () — Flma)} — 3 g g 0L T

= >0 LT ) )
=— D Wijluis, i) {f (v33) — f(uii)} (36)

Here, W;;(us,v,;) represents propagation efficiency and is expressed as follows:

f(”jj) — f(uii)

Wij (wii, vij) = 5

where Wi;(v;, wi) = Wij(wis, vjj) > 0.
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Figure 6 shows a single propagation path of u to v, where C(¢, x) represents the prop-
agation characteristics of u to v and is derived as follows:

oC (x,t .
7ét ) = (div gradg C) (38)
Therefore, we obtain as follows:
0C (u,t oC (u, t 0*C(u,t
(w1) , (1) _ FClu1)
ot ou ou?
Equation (39) represents a propagation equation with respect to u,t € V, and w(u,v) is
the weight parameter of the propagation path between each stage in the process. There-
fore, the square distance to the deviation of (j;,0;) in each propagation path is derived
as follows:

(39)

ds; = gii(§)d&dg; (40)

where & = (us, 0;).
Thus, let £ € (u,0), ds? is derived as follows:

2 2 2
5% = (o)l | | = L2 ()
o o
where G(§) is Fisher matrix and is derived as follows:
L 110
6= 0 5| (42)

According to Equation (41), it is the best way to suppress the volatility o. This result is
in agreement with previous results [11, 12, 13].
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4. Verification of the Riemannian Manifold Theory.

4.1. Log-normal distribution characteristics of rate of return. For a small-to-
midsize firm, it is of the upmost importance not to cause default in a cash flow, and it
is necessary for business continuity. As is the case with rate-of-return deviation, we also
analyzed a return acquisition rate defined by Equation (43). The result is shown in Figure
8 [5].

From the data of monthly rate of return observed, its probability density function was
calculated (Figure 8). As a result, it was found that the probability density function
conforms to log-normal distribution (Figure 8, Theoretical).

Theoretical curve was calculated using EasyFit software (http://www.mathwave.com/),
and as a result of Kolmogorov and Smirnov test, the observed values conformed to
a log-normal type probability density function. Because, in the goodness-of-fit test of
Kolmogorov-Smirnov, a null hypothesis that it is “log-normal” was not rejected with re-
jection rate 0.2, and this data conforms to “log-normal” distribution. P-value was 0.588.
The parameters of a theoretical curve were: p, = —0.134 (average), o, = 0.0873 (standard
deviation), 7, = —0.900. The theoretical curve is given by the following formula.

_ 1 ex 1 (Inz —9) —p ?
f(x)_\/%(x_%))ap p{ 2( Tp )} (43)

4.2. Dynamic simulation of production flow processes. We performed a dynamic
simulation of a production flow process using the simulation system developed by NT'T
DATA Mathematical Systems Inc. (www.msi.co.jp). The observed data of the monthly
rate of return formed a log-normal probability distribution. The purpose of our simulation
was to determine how dispersion affects the throughput. Based on the Fisher matrix of
the information geometry described above, Equation (41) indicates that volatility affects

!
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FIGURE 9. Simulation model of production flow system
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the larger throughput. The simulated production flow process comprised six processes
and nine workers.

With respect to the meaning of the individual parts in Figure 9, we conducted a simu-
lation of the following procedure.

e When the simulation began, it generated one of the products on a “generate” parts
going to “finish”.

e In each process, including the six workers in parallel, the slowest worker waited till
the work was completed.

e When the work of each process was completed, it moved to the next process.

e Simultaneously as each process was completed, it recorded the working time of each
process.

With respect to Table 1 and Table 2,
e Process No. indicates each process (1-6).
e Average indicates the average time.

e STD indicates the standard deviation of process time (sec).
e Worker efficiency (WE) indicates the efficiency of six workers.

“record” calculates the worker’s operating time, which is obtained by multiplying the
specified WE data for the log-normally distributed random numbers in Table 1.

TABLE 1. Working data for six production asynchronous processes

Process No. | No.1 | No.2 | No.3 | No.4 | No.5 | No.6
Average 20 22 25 22 25 21
STD 21 | 25 |16 | 1.9 | 20 | 1.9
W.E 1 0.83 | 1.0 | 0.66 | 0.76 | 0.88 | 0.91
W.E 2 1.27 1 1.26 | 1.21 | 1.31 | 1.17 | 1.20
W.E 3 096 | 1.11 | 1.01 | 1.12 | 0.88 | 0.89
W.E 4 0.92 1096 | 1.06 | 0.98 | 0.91 | 0.9
W.E 5 1.2 [ 1.03]1.07]0.89 | 1.03| 1.1
W.E 6 1.09 | 1.1 1.2 [ 0.98 | 1.13 | 0.89

TABLE 2. Working data for six production synchronous processes

Process No. | No.1 | No.2 | No.3 | No.4 | No.5 | No.6

Average 20 20 20 20 20 20
STD 1.1 15|12 | 14| 10 | 14

WE1 1.0 { 1.0 | 1.0 | 1.0 | 1.0 | 1.0
W.E 2 1.0 | 1.0 | 1.2 | 1.3 | 1.1 1.2
W.E 3 1.7 | 1.1 1.0 | 1.1 1.0 | 1.0
W.E 4 1.0 { 1.0 | 1.0 | 1.0 | 1.0 | 1.0
WES5 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
W.EG6 1.0 | 1.3 | 1.2 | 1.0 | 1.1 1.0

Figure 10 shows the operating time of process 1-6 (recordl-record6). As the working
time of the synchronous process is less volatile, the work efficiency became higher than
the asynchronous process. In Figure 10, the total working time of asynchronous and
synchronous processes are 1241.7 (sec) and 586.4 (sec) respectively. The synchronous
process shows much better production efficiency than the asynchronous process.
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4.3. Actual data example of production flow process. The production throughput
is evaluated using the number of equipment pieces in comparison with the target number
of equipment pieces (production ranking) and simulating asynchronous and synchronous
production (see Appendix A). The asynchronous method is prone to worker fluctuations
imposed by various delays, whereas worker fluctuations in the synchronous method are
small. In terms of the production lead time results presented in the Appendix, the pro-
ductivity ranking tests indicate that test run 3 > test run 2 > test run 1, where test run
1 is asynchronous and test runs 2 and 3 are synchronous.

Here, the throughput values calculated from the throughput probability in test run
1-test run 3, are as follows.

e Test run 1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73
e Test run 2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92
e Test run 3: 5.7 (pieces of equipment)/6 (pieces of equipment) = 0.95

5. Conclusion. By using a Riemannian manifold with a Fisher information matrix, we
verified that the bottlenecks in a production flow process result from worker volatilities
and delivery delays caused by other companies. The results of this work allow us to obtain
the quantitative constraints that are not given by the TOC. Therefore, we were able to
define a stochastic throughput model for producing the propagation necessary to measure
the synchronization derived by Equations (18) and (29). In addition, as a one-dimensional
model, Equation (33) was defined by using Equation (30). Moreover, stationary systems
can be defined by Equation (34).
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versity of International and Information Studies, for verifying the log-normal distribution
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Appendix A. Analysis of Actual Data in the Production Flow System. Figure
2 represents a manufacturing process called a flow production system, which is a manu-
facturing method employed in the production of control equipment. The flow production
system, which in this case has six stages, is commercialized by the production of material
in steps S1-S6 of the manufacturing process.

The direction of the arrow represents the direction of the production flow. In this
system, production materials are supplied from the inlet and the end product will be
shipped from the outlet.

Assumption A.1. The production structure is nonlinear.

Assumption A.2. The production structure is a closed structure; that is, the production
is driven by a cyclic system (production flow system).

Assumption A.1 indicates that the determination of the production structure is consid-
ered as a major factor, which includes the generation value of production or the through-
put generation structure in a stochastic manufacturing process (hereafter called the man-
ufacturing field). Because such a structure is at least dependent on the demand, it is
considered to have a nonlinear structure.

Because the value of such a product depends on the throughput, its production structure
is nonlinear. Therefore, Assumption A.1 reflects the realistic production structure and is
somewhat valid. Assumption A.2 is completed in each step and flows from the next step
until stage S6 is completed. Assumption A.2 is reasonable because new production starts
from S1.

Based on the control equipment, the product can be manufactured in one cycle. The
production throughput required to maintain 6 pieces of equipment/day is as follows:

(60x8=28) 1 o5 (min) (44)

3 6

where the throughput of the previous process is set as 20 (min). In Equation (44), “28”

represents the throughput of the previous process plus the idle time for synchronization.

“8” is the number of processes and the total number of all processes is “8” plus the
previous process. “60” is given by 20 (min) x 3 (cycles).

One process throughput (20min) in full synchronization is

T, = 3 x 120 + 40 = 400 (min) (45)

Therefore, a throughput reduction of about 10% can be achieved. However, the time
between processes involves some asynchronous idle time.
As a result, the above test-run is as follows.

e (test run 1): Each throughput in every process (S1-S6) is asynchronous, and its
process throughput is asynchronous. Table 3 represents the manufacturing time
(min) in each process. Table 4 represents the variance in each process performed by
workers. Table 3 represents the target time, and the theoretical throughput is given
by 3 x 199 + 2 x 15 = 627 (min).

In addition, the total working time in stage S3 is 199 (min), which causes a
bottleneck. Figure 11 is a graph illustrating the measurement data in Table 3,
and it represents the total working time for each worker (K1-K9). The graph in
Figure 12 represents the variance data for each working time in Table 3.

e (test run 2): Set to synchronously process the throughput.

The target time in Table 5 is 500 (min), and the theoretical throughput (not
including the synchronized idle time) is 400 (min). Table 6 represents the variance
data of each working process (S1-S6) for each worker (K1-K9).
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TABLE 3. Total manufacturing
time at each stage for each worker TABLE 4. Volatility of Table 3

WS| S1|S2|S3|S54|5S5]| 56 K1|1.67|1.67|3.33|1.67|1.67|1.67

K1 115 K2(2.33] 2 [2.33] 2 [1.33[1.67
K2 | 20 K3|1.67|3.67|3.33|2.3312.33|3.67
K3 110 K4(0.67| 0 (1.33] 1 |0.33] 1
K4 |20 17 | 15|19 [ 18] 16 | 18 EZ 8 1-(?7 (1) 0-5’3 8 8
K5 |15 ] 15 15 | 15
K7|1.67|1.67| 5 |1.67| 2 |1.67
K6 | 15|15 |15 |15 |15 | 15| 15
K8|4.67| 6 5 [4.67]5.67| 6
K7 |15
K910.3310.33|] 0 {0.33]/0.33]0.33
K8 | 20
K9 | 15|14 |14 |15 |14 | 14 | 14
Total | 145172184199 (175174181
Production Flow System ®
— 205 ’
.S 200 7
\% 195 S 6
E 190 3 ;
= >
£ o £ .
E 175 o 3
5 170 >
Q165 2
(18]
= 160 1
155 0
S1 S2 S3 S84 S5 S6 s1 s2 S3 S4 S5 S6
Manufacturing stage name Manufacturing stage name
Ficure 11. Total work time for FIGURE 12. Volati'lity data for
each stage (S1-S6) in Table 3 each stages (S1-56) in Table 3
TABLE 5. Total manufacturing N
time at each stage for each worker TABLE 6. Volatility of Table 5
WS[SL[S2]S3][S4]S5]S6 Ki] 0 |133) 0 |0} 0 |0
K1 |20 | 20 20 | 20 | 20 | 20 K2/ 0 ] 0 | 0 |0]O67]0
K2 | 20 | 20 | 20 | 20 | 20 | 22 | 20 K3 0 ) 0 ] 0 ]0) 00
K3 | 20 | 20 | 20 | 20 | 20 | 20 | 20 K4]1.671.67] 0 |0) 0 |0
K4 | 20 20 | 20 | 20 | 20 EZ 8 8 8 8 8 8
K5 20 1 20 | 20 | 20 | 20 | 20 | 20 A 0 o Tol o 1o
K6 20 1 20 | 20 | 20 | 20 | 20 | 20 RS T3331933 106711 0o
K7 20 1 20 | 20 | 20 | 20 | 20 | 20 <9 '0 '0 '0 0T 0 1o
K8 | 20 20 | 20
K9 20 | 20 | 20 | 20 | 20 | 20 | 20
Total | 180 | 192 | 196 | 182 | 183 | 182 | 180
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TABLE 7. Total manufacturing

time at each stage for each worker TABLE 8. Variance of Table 7
WS| S1 | S2 | S3 | S4 | S5 | S6 K1[0.67]0.33(0.67(0|0]|0
K1 |20 | 18 | 19 | 18 | 20 | 20 | 20 K2 [0.67]0.67067(0(0|0
K2 | 20| 18 | 18 | 18 | 20 | 20 | 20 K3(10.33]0.33/0.33/0(0|0
K3 | 20 20 | 20 | 20 K4(233| 3 3 10(01]0
K4 [ 20 1311 ] 11 ]20] 20|20 K5]133|133] 1 |0]0)0
K5 201161 161171201 20 | 20 K61(0.67(0.67|0.67{0]010
K6 [ 20 ] 18 [ 18 [ 18 [ 20 [ 20 | 20 K7 2 2 1233]0]0]0
K7 |20 ] 14 | 14 | 13 [ 20 | 20 | 20 K810.67)0.67] 0 |[0]0)0
K9 | 20 20 | 20 | 20
Total | 180 | 165 | 164 | 161 | 180 | 180 | 180

e (test run 3): The process throughput is performed synchronously with the reclassi-
fication of the process. The theoretical throughput (not including the synchronized
idle time) is 400 (min) in Table 7.

Table 8 represents the variance data of Table 7. “WS” in the measurement tables
represents the standard working time. This is an empirical value obtained from
long-term experiments.



