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ABSTRACT. We report an analysis of the fluctuations in the lead time of production pro-
cesses by applying Burgers equation of fluid dynamics, which constrains the state variables
in an internal process. The propagation of fluctuations corresponds to a fluctuation in
the lead time. The factors of such fluctuations include an uncertainty of logistics, un-
certainty of production planning, and stochastic characteristics of the start (order) time
series. We obtained the actual fluctuation data indicated by the starting time series (or-
der time-series) of the lead time period in a batch production system. The throughput of
production processes such as the fluctuation in a turbulence spot is affected by volatilities
in the same manner as the coefficient of diffusion equation. Based on the fact that the
starting time series of the lead time period in production processes has intermittent on-
off characteristics, we confirm that reducing volatilities was the most important factor
for improving production processes. The production efficiency of synchronous processes
became clear from the actual data. For further verification, we confirmed the benefit of
using the synchronization process by performing a dynamic simulation.

Keywords: Throughput deviation, Burgers equation, Fluctuation, Lead time, Produc-
tion process

1. Imtroduction. Many currently implemented production systems are mechanized and
highly integrated with information technologies, which creates systems where human in-
tervention is unnecessary. In certain aspects of the production system, there is a high
volume of build-to-order manufacturing that requires human intervention in the produc-
tion process [1, 3]. In small- and medium-sized enterprises, human intervention constitutes
a significant part of the production process, and revenue can sometimes be greatly affected
by human behavior. Therefore, with respect to human intervention with outside compa-
nies, a deep analysis of the production process and human collaboration is necessary to
understand the potential negative effects of human intervention [1, 3]. Naturally, the
effect of human behavior is not just a problem with small- and medium-sized companies;
it must be regarded as one of the major problems that may occur when humans directly
intervene in the production process [4, 5, 10].

In general, the potential uncertainties should be considered before proceeding with a
system that combines human intervention (Internal force) with outside companies (Exter-
nal force) in the production system [6, 7]. With respect to two elements in a production
system, a total system is formed by connecting the two elements. In this case, a sys-
tem with certain uncertainties will be formed when connecting “human intervention” and
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“outside companies” in a production system. In general, an important concept in the
production system is to develop the best system that results in efficient production. How-
ever, in most analyses of the production process, researchers have not taken advantage of
the noise inherent in the system. Such noise may have a unique usefulness in the system.

Thus, we have been researching mathematical modeling and system evaluations from
a physical point of view to develop “mathematical production engineering” in order to
develop a mathematical system for describing production processes. In a previous study
of stochastic modeling, we considered the internal force and external force as parameters
in a production system. The correlation of lead time vs. throughput is important for
implementing the overall synchronization as a strategy. We had reported a production
system with an intervention of workers in the prior study [6, 7]. In case of a production flow
system with human intervention, we need to fulfill an empirical analysis of worker-specific
production ability. Thus, to achieve optimal general production systems, knowledge of
the importance of biological fluctuations in the system is important.

In our previous study, an on-off intermittency exists in the rate-of-return and lead
time deviations of production processes. In physics, an on-off intermittency is presented
in case of power-law distributions, phase transitions, and self-similar phenomena. In the
production process described in this study, we observed on-off intermittency on a lead time
data with respect to time series outset [8]. Previously, we have reported that by creating a
state in which the production density of each process corresponds to physical propagation,
the manufacturing process is most appropriately described using a diffusion equation [1].
In other words, if the potential of the production field (stochastic field) is minimized,
the equation is defined by the production density function S;(x,t) and the constraint is
described using an advective diffusion equation to determine the transportation speed p
[1, 18].

To enable efficient application to a production system, we have proposed a mathematical
model that focuses on the selection process and production lead time adaptation mech-
anism. To model the throughput time for a production demand/manufacturing system
in the manufacturing stage, the dynamic behavior is derived using a lognormal stochas-
tic differential equation. Using this model, the evaluation equation for the compatibility
condition production lead time is defined using the risk-neutral integral, and the eval-
uation formula for the above conditions is calculated. Furthermore, by performing the
synchronization process, the throughput for the manufacturing process is reduced [3].

In this study, we utilize Burgers equation for analyzing the fluctuations in the lead time
of production processes. The factors causing fluctuations include the following:

e Uncertainty of logistics
e Uncertainty of production planning
e Stochastic characteristics of the order and start time series

Our research findings are as follows.

e The fluctuation in the lead time is caused by the propagation of the fluctuation of
the state variables constrained by Burgers equation of fluid dynamics.

e Based on our current results, we can observe and link the on-off intermittence in
time with the fluctuations that we previously reported in 2014 [8].

e A phenomenon similar to the occurrence in turbulent flow fields discussed in fluid
dynamics is observed in production processes.

e We derive the Burgers equation by recognizing the graph of the start time series
(order time-series) of the lead time period in production processes.

e The diffusion coefficient affects the fluctuation in turbulent spots in fluid mechanics.
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e When the configuration parameters of the diffusion coefficient are considered as a
trend coefficient and volatility, a production process can approach a synchronous
process such as laminar flow in fluid dynamics by reducing the volatility of the
production processes.

e Based on our actual data, we show the reductions in volatility, which led to an
improved production throughput.

e We also implement a dynamic simulation to evaluate and confirm the effectiveness
of synchronous and asynchronous processes.

To the best of our knowledge, this is the first study on the factor of fluctuations in
production processes.

2. Fluctuation Analysis by Burgers Equation.

2.1. Propagation of production density. Figure 1 shows that connection between
processes can be treated as diffusive propagation of products [1]. In Figure 1, u and n
represent the throughput and production density, respectively [1]. In fluid dynamics, S
represents the cross-sectional area; the number density continuity equation is described
as follows:

A(nSAz) = n(t, x)u(t, 2)AtS — n(t,z + Az)u(t,z + Ax)At (1)
AnY\ _  n(t,z+ Az)u(t,r + Az) — n(t, z)u(t, ) 2)
At ), N Ax
on d(nu)
T 3
ot ox (3)
The left-hand side of the second term u% is the advection term. Now, letting u = ¢
(constant value), we consider the following equation.
0 0
- —u = 4
ol + ColU 0 (4)

Equation (26) denotes a linear wave motion traveling to +x direction at a constant speed
c. Then, In Figure 2, when the advection speed changes, Figure 2(a) shows that the
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A part moves quickly to the right, and the distance between AB is shortened gradually
because the B part moves slowly. Figure 2(b) shows that the A part catches up with
the B part and overtakes it after a certain time has elapsed, following which the wave
collapses. Figure 2(c) shows that the dissipation area suppresses processes like the wave
until a limited gradient form when the spatial gradient becomes sharp. The fill area
also shows an area where dissipation occurs [16]. Figure 3 depicts a production process
that is termed as a production flow process. This production process is employed in the
production of control equipment. In this example, the production flow process consists of
six stages. In each step S1-S6 of the manufacturing process, materials are being produced.
Equation (3) is a continuous equation describing the throughput. The bottleneck occurs
at some stage of the process in Figure 3.

Front «—— —  Post
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/ \.\
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I l period
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N o/
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F1GURE 3. Bottleneck period in production flow processes

2.2. Mathematical modeling by Burgers equation. We consider the fluctuation
characteristics of the turbulent and production lead time of production field by using the
Burgers equation. The factors causing fluctuations include the following again:
e Uncertainty of logistics
e Uncertainty of production planning
e Stochastic characteristics of the order and start time series
Linkage of these factors cause the fluctuation; that is, we reported that an on-off inter-
mittency was observed, and then a bottleneck occurs in the production processes.
Figure 4 shows a boundary surface of fluctuation characteristics. In this study, we used
the boundary surface characteristics of the fluctuations to develop a solution for Burgers
equation.
Then, the corresponding Burgers equation that ignores the pressure term is as follows
[2]:
ou ou  J%u
o ot T Vo
By executing Cole-Hopf transformation [9],

(5)

0
=—v—1
u v ny (6)
We obtain as
0 B 0%
5 Duw (7)
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Here, we considered the model of production processes in detail by the above described

model.
Definition 2.1. C(t,x) is a production density. v, is production speed.

A production flow is

oC N oJ
ot ox
Then,
J=Cuv, — D@
ox
where D is a diffusion coefficient.
Then D is
D = 1v?

where v, is a convection time and 7 is an average parts combination work time.

Further, v, is

U = Ug (1—%)

where production speed is assumed to depend on the production density.
From above results,

0 0 Vo oC 0*C
L)oo (L) _plt =
<8t+v08x>o <C5>08:c ez Y
Then, we introduce the variable ¢ for transformation of Equation (12).
5 = —x + Ugt

From Equation (13), Equation (12) is

oC oC 0*C

-~ -~ _pZ =

o "% = Poe

where a = (2vy/Cy).
Equation (14) represents Burgers equation.

(10)

(11)

(12)

(13)

(14)
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Here, we transform Equation (14).

oC oC 0*C
- = Dp— 1
ot O = Prgge (15)
where
~1
Dy = {M} (16)
T

where t, is an average convection time of production density, and xq = vytp.
We execute Cole-Hopf transformation to Equation (15).

0
=—-D,—1 1
C hax nh ( 7)
oh 0*h

Equation (19) represents a one-dimensional diffusion equation. We obtained the Burgers
equation for production processes that are similar to turbulence models in fluid dynamics.

From Equation (15), we can obtain a particular solution in case of the following equa-
tion:

Op | Oy _ 0%
25 + QO% = D8x2 (19)
where p < 1.
A A A
o(t,x) = 5 [1 — tanh { (E <x - Zt>> H (20)
where
p=Aas lim ¢, p=0as lim ¢ (21)
T—+00 T——00

We can obtain a traveling wave as speed = A/4 and Width = (16D)/A%. The speed and
width approach similar values of A/4 and A/(4D), respectively, in Equation (21).

Based on Figure 5, the transition between laminar flow and turbulent flow occurs in
production processes when an improvement or change of the endogenous parameters is
made. A proper understanding of the critical value of the Reynolds number in the vicinity
of the turbulence spot is required. This value needs to be defined for each production pro-
cess; hence, formulating a mathematical model as its foundation is of utmost importance.
The turbulence spot represents a fluctuation in free energy. Therefore, a synchronous
status can be approached if the turbulence has a reduced spot width and the manage-
ment person confines the possible production flow to a narrow region between laminar and
turbulent flow. Therefore, when (¢, x) is considered as the continuum approximation of
the variable throughput deviation between processes, in general, we consider the Burgers
model as follows:

Oplt, ) . Op(t,x) _ 0p(t )

¢ ot olt7) or 02

(22)

where o(t,z) < 1.
The condition of the variable’s z follows Equation (21). In other words, x — oo
represents an extremely large value that approaches bottleneck synchronization, and x —

0 ignores processes.
A A B
et = [t (55 (- 321) )} .
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where the value of no time change ¢(t,x) represents ¢g(x) (B = 0).

wolt, o) = ? (1 — tanh% (?) D1> (24)

where let —n <z < 4n(n > 0). = represents a deviation.

2.3. Fluctuation function using Ginzburg-Landau (GL) free energy. GL is de-
fined as follows.

Definition 2.2.

k2
Pl = [ |G+ )] v, vesn (29
0
As gradient system,
dp 3F () _ 12172 !

When the GL energy changes (i.e., fluctuates), the common understanding is that the
fluctuations occur only near the transition point. Thus, when there is no time change,

oo (90 0 1 (9%
k? — | dv — — || = )d 2
J (53] (52) o= [ [52] (52) o 0
By calculation of Equation (27) [17], we obtain

Flpo) = k /0 V2 (o) din (28)

F(¢) in Equation (28) represents the energy density of a critical vicinity of fluctuation in
the production flow. Thus, F'(p) is determined by the system parameters and its potential
shape. From the normalized lead time of Figures 6 and 7, the normalized lead time of
deviation, which governs the progression of processes, generates the phenomenon of on-off
intermittency [8].
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Next, we propose a mathematical model with a throughput improvement plan.

0Q 0Q  [V(Ap) -Q]  ,.0%Q
o 9% 4 ; ] o7

where @ = Q(t,x) represents a throughput function, V(Ay) is determined by a lead
time deviation, and Z(t,z) is the distributed white noise. Equation (29) is the Burgers
equation with distributed white noise, and systems derived by Equation (29) occur in an
on-off intermittency [8].

The normalized lead times of Figures 14-17 show the snap at the time of the start of
the process lead time (before/after reclassification). Therefore, p(t) is equal to a time
progress rate and thus ¢ is a function for only time dependence.

+D

+ Z(t, ) (29)

Assumption 2.1.

0p(t
% —ap(t), 0<t<T (30)
Then, by adding the noise term Z(t¢) to Equation (30),
a t / !
% = (a+ Z()p(t), < Z(t)-Z (t) >= 256 (t - t) (31)
Next, let a starting point be to variable x under a continuous process. We obtain
do(t, x 0?p(t, x
PT) _ oy 20,0 ptt,0) + DTEED), (52)

< Z(t,x)-Z (t',x'> >= 25 (t—t,) J (x—x,>

According to a general analysis of statistical mechanics, which is Hopf-Cole transformation

[9]:

o(t,z) = exp(h(t, 7)) (33)
Moreover,
U(t, ) = — 6”;25”) (34)

Then, we obtain after execution of Hopf-Cole transformation as follows:

oU(t, x) ou(t,xz) _0*U(t,z) 0Z(t,x)
g TPV = D

(35)

3. Actual Data Examples from a Production Process with a Nonlinearity. We
present actual data examples from both open and cyclic production flow process with
nonlinearities. With respect to the actual data in cyclic production processes, in Table
1, test run3 indicates a best value for the throughput in the three types of theoretical
working time. test run2 is an ideal production method. However, because it is difficult
for talented worker, test run3 is a realistic method. Please see the actual data to [4, 11].

TABLE 1. Correspondence between the table labels and the test-run number

Production process Working time | Volatility
test runl Asynchronous process 627(min) 0.29
test run2 Synchronous process 500(min) 0.06
test run3 [“Synchronization with preprocess” method] [470(min)] 0.03
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3.1. Example of the cyclic production flow process. Figure 8 depicts a production
process that is termed as a production flow process. This production process is employed
in the production of control equipment. In this example, the production flow process
consists of six stages. In each step S1-S6 of the production process, equipments are being
produced.

The direction of the arrows represents the direction of the production flow. In this pro-
cess, production materials are supplied through the inlet and the end-product is shipped
from the outlet. For this flow production system, we make the following two assumptions.

] l / Working starting date
AN/ .

Inlet
e :> 24 days 24 days

Outlet (One term) (One term)
Ficure 8. Cyclic production FIGURE 9. Actual work across the
flow process two periods

3.2. Example of the open production flow process. After we observed the nonlinear
characteristics in the production processes, we attempted to improve the throughput [3].
At present, we have maintained a synchronized process. Using the asynchronous logistics
phenomenon and supply chain delays, we present a throughput improvement example, in
which a production flow process is used for throughput improvement, as shown in Figure
3.

Here, we investigated improved and standard process flows using a control device as an
example. As a result, we found that post-process priority is appropriate for improving the
throughput. Using a buffer of the previous process to overcome bottlenecks in the post
process, the previous process can synchronize the post process, leading to significantly
improved lead times.

The actual manufacturing is across the two periods in Figure 9. In Figure 9, there
are about 24 days which is the longest lead time in one period. In case of production in
uncertainty situation, it is an important issue to decide the production capacity by any
method.

3.3. Verification by actual data. The current business style is a complete make-to-
order production system and the production process is a batch process. Figures 6 and
7 show the deviation of the normalized lead time of a batch production. C1, C2, D1,
D2 in Figure 10 become C1’, C2’, D1’, D2’ by moving the work start time respectively.
P1 in Figure 11 represents the movement of the working power to W3. P2 in Figure 11
represents the movement of the working power to W5.

Therefore, Figure 10 and Figure 11 show the production processes before and after
on-off intermittency, respectively. Figures 12 to 14 show the normalized lead time data
before reclassification of production processes and corresponding to Figure 10. Figures
15 to 17 show the normalized lead time data after reclassification of production processes
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TABLE 2. Normalized lead time/volatility before reclassification of produc-
tion process

Lead time | Volatility

9.67

TABLE 3. Normalized lead time/volatility after reclassification of produc-
tion process

Lead time | Volatility

9.67

and and corresponding to Figure 11. Our strategy was to change the start time of the
production and reduce the worker’s volatility, as shown in Figure 11. After reconstructing
the process shown in Figure 11, we could handle sudden orders by appropriately managing
the available manpower and prevent opportunity loss. As a result, we increased monthly
shipments.

From Table 2 and Table 3, no change was observed in the actual lead times. However,
the volatility is reduced. In the process diagram, the time allocated for the operator is
the first half of the entire process. We could offer a sudden customer support for the
production. As a result, the production throughput also was improved.

Definition 3.1. Throughput coefficient based on a standard production flow

[Number of production man-power] X [Number of real working time]

= [Production risk rate] X [Reduction rate of lead time]
1 (36)
[Real working time of lead time]
If the numerator is constant, i.e., [production risk rate] = 1 and [real lead time] =

constant, n = 1.21 (21% 1ncrease) in the improved production and n = 1.35 (35% increase)
in the another improved production. Please see the reference in detail [12].
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From the above description, by using a previous process as a buffer in a post process,
we can realize synchronization between a previous process and post process. In other
words, we have realized a post process with priority higher than the previous process.

3.4. Dynamic simulation of production processes. Regarding rate-of-return devi-
ation, it was found that it conforms to log-normal distribution. From the analysis of
mathematical models about rate-of-return deviation, we obtained the following conclu-
sion. If an amount of money of order entries and an amount of money of production are
stochastic, accumulated excessive order entries becomes of Brownian motion, and thus a
random “fluctuation” occurs in hour to hour order entries and production even though
it might be of a small degree. In addition, a rate of return is distributed log-normally,
a cash flow of a target company proportional to a rate of return will be also distributed
log-normally, naturally [15]. Therefore, we attempted to perform a dynamic simulation of
the production process by utilizing the simulation system that NTT DATA Mathematical
Systems Inc. (www.msi.co.jp) has developed. We conducted the simulation procedure in
Figure 18. Please see the detail procedure in [11].

A

product
W™ o — R
start processl recordl process2 record2 “

process3 record3 procsssd recordd

E[—";‘“'E]—’;W

d — b —d— 12— M

pracesss records processs records finish

FiGURE 18. Simulation model of production flow system

With respect to the meaning of the individual parts in Figure 18, “record” calculates
the worker’s operating time, which is obtained by multiplying the specified WE data for
the log-normally distributed random numbers in the data. Please see the reference about
the data for Figure 19 [11].

Figure 19 shows the operating time of process 1-6 (recordl-record6). As the working
time of the synchronous process is less volatile, the work efficiency became higher than
the asynchronous process. In Figure 19, the total working time of asynchronous and syn-
chronous processes are 1241.7(sec) and 586.4(sec) respectively. The synchronous process
shows more better production efficiency than the asynchronous process.



FLUCTUATION ANALYSIS IN PRODUCTION PROCESS 1627

40
£
» 30
QU
£
=]
[sTs)
£
= 20
o
=

10

0

1 2 3 4 5 6
Process No.

B : Asynchronous
* :Synchronous

Ficure 19. Working time for process number one through six

4. Conclusion. We clarified that the fluctuations in lead time were dependent on the
state variable, which was a throughput deviation. The propagation of throughput devi-
ation was restricted by Burgers equation of fluid dynamics. In our previous study, we
reported that the normalized lead time data had an on-off intermittency. To verify our
analysis, we represented actual data that were obtained before/after the managing of
processes using the cyclic production flow process. Moreover, we presented results from
a dynamic simulation to confirm the superiority of the synchronous process compared to
the asynchronous process.
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