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Abstract. Our motivation is to clarify the reason why the stochastic resonance occurs
in production system. The noises regard as the probability element that the worker affects
the process progress, or the supply chain has an impact in the process. The stochastic
resonance represents the relationship between the volatility of the working ability as the
noise intensity and the throughput. This study is part of an ongoing report on stochastic
resonance; it describes the auto-correlation function based on the self-similarity of the
production process. When the probability intensity coefficient in the explicit solution of
the autocorrelation function is small, the influence of the phase difference is small. By
contrast, when the probability intensity coefficient is large, the influence is great and the
form of the phase difference is temporally shifted in the right direction of the border. The
stochastic resonance is observed. In addition, we have calculated the explicit equation of
the power spectrum. As a result, the correlation function spectrum of the process phase
difference is known to have a Lorentz-type spectrum.

We are calculating the autocorrelation function of the final processes in consideration
of the previous processes because the previous processes substantially affect throughput.
The autocorrelation function is extremely important in evaluating the production flow
process.
Keywords:stochastic resonance, autocorrelation function, transition proba-
bility density function, power spectrum, probability throughput

1. Introduction. Based on mathematical and physical understandings of production
engineering, we are conducting research aimed at establishing an academic area called
mathematical production engineering. As our business size is a small-to-medium-sized
enterprise, human intervention constitutes a significant part of the production process,
and revenue can sometimes be greatly affected by human behavior. Therefore, when
considering human intervention from outside companies, a deep analysis of the production
process and human collaboration is necessary to understand the potential negative effects
of such intervention.

With respect to mathematical modeling of deterministic systems in our studies, a phys-
ical model of the production process was constructed using a one-dimensional diffusion
equation in 2012[1]. Especially, the many concerns that occur in the supply chain are
major problems facing production efficiency and business profitability.

With respect to the analysis of production processes based on physics in our studies,
we have clarified that phenomena such as power−law distributions, self-similarity, phase
transitions, and on−off intermittency can occur in production processes[5, 6, 7, 8, 9].
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On the other hand, there is the famous theory of constraints (TOC) that describes the
importance of avoiding bottlenecks in production processes[10]. We proposed that small
fluctuations in an upstream subsystem appear as large fluctuations in the downstream
(the so-called bullwhip effect)[13]. The bullwhip effect generates a large gap between the
demand forecasts of the market and suppliers. Large fluctuations can be suppressed by
the following mechanisms.

(1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

(2) Sharing the demand information and performing mathematical evaluations.
(3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear

vibration theory).
(4) Basing the inventory management approach on stochastic demand.

We consider internal and external forces as two parameters in the production system.
Rather than selecting the ratio between lead time and throughput that optimizes an indi-
vidual’s productivity, we select the parameters that achieve overall synchronization[4, 12].
In our previous study of a production system involving worker intervention, the specific
abilities of workers required empirical analysis. To optimize typical modern production
systems, we must recognize the importance of biological fluctuations. For example, the
following aims typify technical innovation in the engineering industries:

(1) Detecting a small signal using the noise in the force.
(2) Synchronizing the circuit groups using the noise power.

With respect to stochastic resonance (SR) in our studies, we utilized in physical systems
such electronic circuits, and even in biological systems such as neurotransmission; as a
result, the same phenomenon has been confirmed[17, 18]. However, there have been no
reports on application of SR in production processes for the improvement of throughput.
Accordingly, we present the improvement of throughput in production processes using SR
in the present study.
Moreover, worker productivity in a high-mix, low-volume production process is opti-

mized for the market demand, rather than the mass production process. To demonstrate
the effectiveness of the throughput when the worker productivity is analyzed in this man-
ner, we extract the probability distribution of the productivities of workers in a real
production firm. Analyzing the actual results, we ascertain the probabilities of human
factors in a production process.
Fujisaka and colleagues modeled the production process as a circuit system with an

annular structure and coupled synchronization loops[19]. A production flow process used
in our actual processes is regarded as the coupled synchronization loops reported in Fu-
jisaka’s reference[19]. Here, we apply their model to a relatively simple cascaded system,
and model the dynamics using their derived Fokker−Planck equation (FPE). The FPE
applies the modulation content of the equilibrium solution to the operator as the sto-
chastic variation, and seeks the response and correlation functions. In their numerical
calculations, Fujisaka and colleagues obtained the output signal-to-noise ratio, but did
not calculate the eigenvalues and eigenfunctions of the operators in the fluctuating solu-
tion.
As described above, we consider that the noise (stochastic component) in workers’ capa-

bility follows a probability distribution. We study the relationship between the intensity
of SR (volatility in workers’ability) and the throughput (lead time) by capturing the pro-
cess as a type of threshold reaction element. The proposed concept can potentially lead
to innovative productivity by companies implementing a production system. Although
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the test system is small, it contains useful data for analyzing an innovative production
system.

This study is a continuation of a previous research manuscript on stochastic reso-
nance (SR)[20]. We utilize a Langevin−type equation because we need to describe the
mathematical model of production flow and the relation between potential energy and
fluctuations[6]. In previous research, we reported that the phase difference between stages
in a process corresponds to the volatility of the working time and that the parameters of
the potential energy function can affect the stabilization of the process[15]. Assumptions
of this paper are as follows.

• One of the processes flows sequentially next process. Moreover, there is always a
worker in the production process.

• There is a correlation between the process θi and the upstream processes θi+1 in close
proximity to it in Figure 2.

• An outside company (Supply chain) is regarded as delay of supply.
• Self-similarity exists in production system.

In this study, the analysis procedure of this paper is as follows.

• Consider a model of deviation signal.
• Construct a phase torus model.
• Bring into the model of Langevin type equation under self-similarity.
• Calculation of the transition probability of phase torus.
• Introduce the Fokker-Planck equation after revealing the presence of stochastic res-
onance.

• Finally, calculation of SNR after getting power spectrum.

To measure the characteristics of the coupled system, in particular for calculating the
spectral density, a fundamental signal is most important. Here, in accordance with the
progress of the process, the value of autocorrelation function of elementary signal between
the time t and t+ τ is important.

Therefore, we are calculating the autocorrelation function of the final processes in con-
sideration of the previous processes because the previous processes substantially affect the
throughput of the final processes. The autocorrelation function is extremely important
in evaluating the production flow process. When the probability intensity coefficient in
the explicit solution of the autocorrelation function is small, the influence of the phase
difference is small. By contrast, when the probability intensity coefficient is large, the
influence is substantial and the form of the phase difference is temporally shifted in the
right direction of the border. Consequently, stochastic resonance occurs. In addition, we
calculated the explicit equation of the power spectrum. As a result, the correlation func-
tion spectrum of the process phase difference is known to have a Lorentz−type spectrum.
Finally, we propose a mathematical model for the probability throughput. To the best
of our knowledge, the explicit calculation of the autocorrelation function and its power
spectrum calculation have not been previously reported.

2. Production framework in equipment manufacturer. The production methods
used in production equipment are briefly covered in this paper. More information is
provided in our report[2].
　 This system is considered to be a“Make-to-order system with version control”,
which enables production after orders are received from clients, resulting in“ volatility”
according to its delivery date and lead time. In addition, there is volatility in the lead
time, depending on the content of the make-to-order products (production equipment).
　 In Figure 1(A), the“ Customer side” refers to an ordering company and“ Supplier
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(D)”means the target company in this paper. The product manufacturer, which is the
source of the ordered production equipment presents an order that takes into account the
market price. In Figure 1(B), the market development department at the customer ’s
factory receives the order through the sale contract based on the predetermined strategy.
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Figure 1. Business structure of company of research target

3. Calculation of the autocorrelation function and power spectrum. To measure
the characteristics of the coupled system, in particular for calculating the spectral density,
we calculate the autocorrelation function of fundamental signal and power spectrum.

3.1. Mathematical modeling by using Fokker−Plank equation. In Figure 2, pro-
cesses (i − 1) and process (i + 1) are uncorrelated and θi denotes the phase at process
i. Let the deviation of phase between processes hi−1 = θi−1 − θi and hi = θi − θi+1. In
Figure 3, there exists correlation between the processes proximate to one another in the
production. In other words, the autocorrelation of hi(t) only is enabled. As mentioned
in our previous study, the rate−of−return−deviation model in the production business
can be described as a Langevin−type equation[6]. Figure 4 shows an equivalent model of
flow−shop type production processes. Let hi ≡ di − di−1 and dθi/dt = di.
We call θi the phase parameter of the processes. A,B,C are coupling coefficients.

di, di−1 denote equivalents to the potential energies of processes. N denotes a node in the
circuit. E(t) = E0 + em sin(wt− φ) has an alternating current.
With respect to di − di−1 = ∆di, ∆di = 0 basically impossible by mean of the coupling

coefficients A,B,C with no harmony. Therefore, the deviation signal, hi, undergoes fluc-
tuations. In Figure 4, asynchronous phenomena are realistically evoked in the processes
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agation under noise
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Figure 3. Fluctuation be-
tween processes

due to fluctuations affected by the variable parameter C. A detailed analysis is omitted
here.
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Figure 5. Production flow
process by polar coordinate

hi is represented by Langevin type equation as follows:

dhi

dt
= fi(hi; t) +

√
Hri(t) (1)
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where fi(hi; t) denotes a probability throughput. h ∈ [h1, h2, · · · , hN ′ ],
√
Hri(t) denotes

the noise term.

3.2. Calculation of the autocorrelation. Figure 2 shows the concept of production
processes. θi(t) denotes the output of the phase level[19].

dθi
dt

= − sinMθi(t)− g(t) sin θi(t) (2)

where sinMθi(t) denotes a basic cycle item (M = 2, 4)and g(t) sin θi(t) denotes a modu-
lation item[19].
From Equation (2), the potential energy is defined as follows[19]:

Definition 3.1. Potential energy V (θ)

V (θ) = −K{
∑
i

cos θi + a
∑
i

∑
j

cos(θi − θi+j)} (3)

Equation (3) denotes the case where no external force. Thus, to implement the char-
acteristics as a coupled system, i.e., to calculate a spectral density, understanding the
fundamental signal is important. In this study, we are interested in the value of the
autocorrelation function between the time t and t + τ of a fundamental signal sin θi.
Accordingly, we must calculate as follows to determine the potential function Equation
(3).

<
∑
i

sin θi,
∑
i

sin θ
′

i > (4)

Equation (4) represents that θi at t becomes θ
′
i at t+ τ

Therefore, Equation (4) is derived as follows under the transition probability P (θ, t +
τ |θ′

i, t).

Definition 3.2. Autocorrelation function between the time t and t+ τ .

Kss(τ) =

∫
T

∫
T

{
∑
i

sin θi}P (θ, t+ τ |θ′

i, t)× {
∑
i

sin θ
′

i}Wst(θ)dθdθ
′

(5)

where T denotes a torus.
This time, let P (θ, t+ τ |θ′

i, t) be as follows.

P (θ, t+ τ |θ′

i, t) = exp{L · τ}δ(θ − θ
′
) (6)

where, L ≈
(
− ∂

∂θi
·H +H · ∂2

∂θ2i

)
.

Hence, let δ(θ − θ
′
) be assumed as follows.

Assumption 3.1. δ(θ − θ
′
) constitutes a complete orthonormal system.

δ(θ − θ
′
) =

∑
i

φi(θ)φi(θ
′
)

= exp
[1
2

{
V (θ) + V (θ

′
)
}]∑

i

φi(θ)φi(θ
′
) (7)

Therefore, Equation (6) is derived as follows[19]:

P (θ, t+ τ |θ′

i, t) = exp{L · τ} × exp
[1
2

{
V (θ) + V (θ

′
)
}]∑

i

φi(θ)φi(θ
′
) (8)
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Hence, the autocorrelation function Kss(τ) is derived as follows[19]:

Kss(τ) = Cst

∑
i

exp(λiτ)×
{∫

T

sin θφi(θ)dθ
}2

(9)

where, Cst denotes a normalization constant.

3.3. Calculation of constraint equation of a synchronous system in the vicinity
of the model. The production density function W (φ, t) is derived as follows[1]:

∂W (φ, t)

∂t
+ F

∂W (φ, t)

∂φ
= H

∂2W (φ, t)

∂φ2
(10)

We can obtain the eigenvalues ϕi(φ) and eigenfunctions λi by normalizing Equation
(10)[1]. In this subsection 3.3, we assume Figure 6.
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Figure 6. Concept of pre-process and final-process

The variable θ in Equation (9) replaces φ.

Kss(τ) = Cst

∑
i

exp(λiτ)×
{∫

T

(sinφ)ϕi(φ)dφ
}2

(11)

Equation (11) denotes an autocorrelation function with respect to φ at the final process
that takes into account the influence of the pre-process.

The eigenfunction ϕi(φ) and eigenvalue λi obtained by normalizing Equation (10) are
derived as follows[1]:

λi =
µ

4
+

α2
i

µ

Ai =
{
2
(α2

i

µ2
+

1

µ
+

1

4

)} 1
2

cotαi =
α2
i

µ
− µ

4αi

ϕi(φ) = Aie
(µ
2
)φ
{(2αi

µ

)
cosαiφ+ sinαiφ

}
(12)

Hence, Kss(τ) can be calculated from Eqs.(11) and (12); that is, Kss(τ) is derived by
calculation as described in Appendix A : Then, let Ψ be as follows:

Ψ =
[
Ai

{(2αi

µ

)(
ΦC

(1+αi)
+ ΦC

(1−αi)

)
+ΦS

(1+αi)
+ ΦS

(1−αi)

}]2
(13)
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Hence, with respect to Ψ in Equation (13), Kss(τ) is derived as follows:

Kss(τ) = Cst ·Ψexp(−λτ) (14)

Therefore, the power spectrum Swn(f) is as follows:

Swn(f) =

∫ ∞

0

cos(2πf · t)Kss(t)dt (15)

Then, Let λ = 1
τm

, Kss is replaced as follows:

Kss(τ) = Cst ·Ψexp(− t

τm
) (16)

where τm denotes a time constant.
Accordingly, Swn(f) is derived as follows:

Swn(f) =

∫ ∞

0

cos(2πf · t)Kss(t)dt =

∫ ∞

0

cos(2πf · t)Cst ·Ψexp(− t

τm
)dt

= Cst ·Ψ
∫ ∞

0

exp(− t

τm
) cos(2πf · t)dt (17)

Then, Let ξt =
t
τm

. Consequently, we can obtain dt = τmdξi. Hence, Swn(f) is derived as

follows[14]:

Swn(f) = Cst ·Ψ
∫ ∞

0

exp(−ξi) cos(2πf · ξiτm)dξi = Cst ·Ψ
[ τm
1 + (2πfτm)2

]
(18)

In the aforementioned description, if the potential function V (θ) is assumed to be a first-
order approximation near the origin of θ, the power spectrum Swn(f) can be obtained as
Equation (18) with respect to θ.
Then,with respect to the phase difference set to φ between the pre-processes and final

process, Equation (10) is derived.

!!
φ!

-φL! V(φ)! +φL!

F>0!F<0!

Figure 7. First-order ap-
proximation near the origin of
θ

T!!

Figure 8. Conceptual model
of the process cycle period and
duration Tsi(t) and Tρ(t)
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3.4. Phase, frequency and power spectrum. According to our previous report [14],
the coupled normal distribution Wρi(t) is derived with a first- order moment as follows:

rWρi
(t− t

′
) =

rI

2
exp

[
−r|t− t

′|
]

(19)

Wρi(t) has a normal distribution, and when its first-order moment is denoted as Equation
(19), the correlation function spectrum of the phase difference in processes has been shown
to have a Lorentzian spectrum [22, 14]. Furthermore, as Wρi(t) has a similar content as
a process throughput, the probability throughput C(x, t) is derived as follows:

∂C(x, t)

∂t
+ v

∂C(x, t)

∂x
= D

∂2C(x, t)

∂x2
+ Z(x, t) (20)

where Z(x, t) denotes a white noise, v is an advection speed andD is a diffusion coefficient.
Here, assuming that C(t) (≈ h(Wρi : t ≥ 0)) is restricted to a function of time, it can

be obtained, as described in our previous report, as follows[2].

dC(t) = µC(t)dt+ σC(t)dB(t) (21)

where µ is a trend coefficient, σ denotes a volatility and B(t) denotes a Winner process.
We can obtain a different equation as follows:

dC(t)

dt
+ rC(t)dt =

√
Hr(t) (22)

where r is a viscosity coefficient, and
√
Hr(t) is random external force.

The actual data of a test run are clarified, such as in Eqs.(21) and (22), from the actual
data of test runs in production flow processes. Please refer to our previous report for a
detailed description[12].

Next, we attempt to calculate the spectral density from Equation (10)[21, 14]. We
rewrite Equation (10) as follows:

∂W (φ, t)

∂t
+ F

∂W (φ, t)

∂φ
= H

∂2W (φ, t)

∂φ2
(23)

In Equation (10), we define the function Wn(t) with respect to time t.

Definition 3.3. the function Wn(t) with respect to time t in H2(D) space.

Wn(t) =

∫
W (φ, t)ϕn(φ)dφ (24)

where ϕn(φ) denotes an eigenfunction described above.
Wn(t) is satisfied as follows:

Wn(t)

dt
+ ΓnWn(t) = fn(t), n = 1, 2, · · · (25)

where, Γn denotes a normalization constant and fn(t) =
√
Hrn(t).

Equation (23) is a diffusion equation on a dual flat space. Therefore, Equation (24) has
eigenvalues and it’s solution is derived formally as follows:

Wn(t) ≈ exp
[
−Γn · t

]
·ΓnWn(0) + Γn

∫ t

0

dt
′
exp

[
−Γn(t− t

′
)
]
·Wn(0) (26)

Consequently, from Equation (26),

< |Wn(t)|2 > = exp
[
−Γn · t

]
· < |Wn(0)|2 >

+ <
∣∣∣∫ t

0

dt
′
exp

[
−Γn(t− t

′
) · Γ−1

n Wn(t
′
)
]∣∣∣2> (27)
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where < fn(0) >= 0 and < fm
n (t) · fm

n (t
′
) >= 2Hfδmm

′ (t− t
′
)

Hence, the autocorrelation function ϕWn(t) is derived according to Equation (16) as
follows:

ϕWn(t) = Hf < |Wn|2 > · exp
[
− t

τn

]
(28)

where τn denotes a time constant.
Consequently, the power spectral density SWn can be calculated as follows[14]:

SWn(fρ) =< |Wn|2 > · Hfτn
(2πfρτn)2 + 1

(29)

where

SWn(fρ)
∼=

∫ ∞

0

cos(2πfρ · t)ϕWn(t)dt (30)

ϕτ (t) ∼=
∫ ∞

0

cos(2πfρ · t)SWn(fρ)dfρ (31)

Thus, SWn(fρ) has f−1
ρ characteristics. Therefore, the SNR of theoretical equation is

derived as follows:

Definition 3.4. Theoretical equation of SNR

SNR ≡
[Ts· < SWn(fρ) >

SN

]2
· exp

[
− Ts

SN

]
(32)

where SN and Ts denote a power spectrum and a threshold value respectively.
The SNR of the production flow process is

SNR ≡ < Shn(freq) >

SN

(33)

Table 1. Transition of noise intensity peak value on stochastic resonance
(Equation (32))

Figure number Time constant vakue τ SNR value Noise intensity
Figure 9 τ = 0.5 9 8.85
Figure 10 τ = 1.0 27 8.8
Figure 11 τ = 2.0 57 7.85
Figure 12 τ = 3.0 63 7.8

Table 2. Transition of noise intensity peak value on stochastic resonance
(Equation (33))

Figure number Time constant value τ SNR value Noise intensity
Figure 13 τ = 0.5 0.08 28.6
Figure 14 τ = 1.0 0.08 21.4
Figure 15 τ = 2.0 0.08 8.3
Figure 16 τ = 3.0 0.08 5.7

4. Numerical simulation.
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Figure 9. Stochastic reso-
nance (Equation (32),Dρ = 1,
τ = 0.5, Ts = 12.2
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Figure 10. Stochastic reso-
nance (Equation (32),Dρ = 1,
τ = 1, Ts = 14
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Figure 11. Stochastic reso-
nance (Equation (32),Dρ = 1,
τ = 2, Ts = 17.0
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Figure 12. Stochastic reso-
nance (Equation (32),Dρ = 1,
τ = 3, Ts = 20

4.1. Calculation of SNR. The evaluation of theoretical equation (Equation (32)) and
approximation equation (from actual data) are represented as follows.

(1) According to the time constant (τ) of autocorrelation function increases, the spectral
peak value is shifted to the left (See Figure 9-Figure 12, Figure 13-Figure 16, Table
1 and Table 2). There are so many situation that is over the standard working time,
it is corresponding to Figure 9/Figure 10, Figure 13/Figure 14, Figure 17/Figure 18
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Figure 13. Stochastic reso-
nance (Equation (33)),Dρ = 1,
τ = 0.5
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Figure 14. Stochastic reso-
nance (Equation (33)),Dρ = 1,
τ = 1
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Figure 15. Stochastic reso-
nance (Equation (33)),Dρ = 1,
τ = 2
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Figure 16. Stochastic reso-
nance (Equation (33)),Dρ = 1,
τ = 3

and Table 4 that is an asynchronous process (test run 1). A synchronous processes
(test run 2, 3) indicate Figure 11/Figure 12, Figure 15/Figure 16, Figure 19/Figure
20 and Table 6/Table 8. In other word, the stochastic resonance is occurred in Figure
11/Figure 12, Figure 15/Figure 16, Figure 19/Figure 20 and Table 6/Table 8.
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Figure 17. Spectral density
of throughput deviation,Dρ =
1, τ = 0.5
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Figure 18. Spectral density
of throughput deviation,Dρ =
1, τ = 1
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Figure 19. Spectral density
of throughput deviation,Dρ =
1, τ = 2
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Figure 20. Spectral density
of throughput deviation,Dρ =
1, τ = 3
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Figure 21. Transition
probability density func-
tion(Diffusion coefficient =
0.5)
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Figure 22. Transition
probability density func-
tion(Diffusion coefficient =
2)

(2) The value of SNR is the larger at near Ts ≈ 17or20 from our theory and makes greater
at Ts ≤ 20.

When the probability intensity coefficient in the explicit solution of the autocorrela-
tion function is small, the influence of the phase difference is small. By contrast, when
the probability intensity coefficient is large, the influence is substantial and the form of
phase difference temporally is shifted in the right direction of the border. The stochastic
resonance is observed to occur. That is, the stochastic resonance is clear from Figs.21
and stochasticfig19 obtained by calculating Equation (23) for the transition probability
density function W (φ, t). We confirmed stochastic resonance in a test run of a production
flow system. The threshold was set to Ts ≈ 20.
Stochastic resonance can occur via the following mechanism: First, if the threshold

is varied, the noise intensity amplifies in response to the large uncertainties in the over-
all system and human factors. Consequently, the thresholds are always exceeded and
stochastic resonance is not observed. However, stochastic resonance emerges when each
process is assigned the same threshold Ts ≈ 20. The threshold response pulses that gen-
erate stochastic resonance are enclosed in the round-shaped boxes in Tables 4, 6, and 8.
Thus, with respect to the volatility of working time in Appendix B, Table 4 shows many
volatilities of data, the next is Table 6 and the minimum is a table 8. Actual data indicate
that Test run 1 is larger than Test runs 2 and 3. Please refer to the reference with respect
to the actual data[11, 16].
We can get the reasonable throughput criterion value (process criterion value), which

sets a 20 minute per process by setting the time constant τ to 3, from Equation (32) (
Theoretical SNR ) and Equation (33) ( SNR of production flow process ). Here, the 20
minute per process denotes“WS”of Tabel 6 and Table 8 in Appendix B.
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When a time constant is large, the fluctuation speed becomes slow. Conversely, when a
time constant is small, the production throughput becomes unstable state. The optimal
throughput criterion is determined by both of theoretical SNR and SNR of production
flow process. Thus, we choose the value of the time constant to 0.5, 1, 2, 3.

Table 3. Correspondence between the Test−run number

Production process Working time Volatility
test run1 Asynchronous process 627(min) 0.29
test run2 Synchronous process 500(min) 0.06

test run3
�� ��“ Synchronization with preprocess”method

�� ��470(min)
�� ��0.03

4.2. Actual data example of production flow process. The production throughput
is evaluated using the number of equipment pieces in comparison with the target number
of equipment pieces (production ranking) and simulating asynchronous and synchronous
production. The asynchronous method is prone to worker fluctuations imposed by various
delays, whereas worker fluctuations in the synchronous method are small. The produc-
tivity ranking tests indicate that test run 3 > test run 2 > test run 1, where test run
1 is asynchronous and test runs 2 and 3 are synchronous. Please refer to our report for
more information[16].

Here, the throughput values calculated from the throughput probability in Test run
1−Test run 3, are as follows[16]. With respect to the actual data, please see Appendix B.

• Test run 1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73
• Test run 2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92
• Test run 3: 5.7 (pieces of equipment)/6(pieces of equipment) = 0.95

5. Conclusion. We calculated the autocorrelation function of the final processes with
consideration of the previous processes because the previous processes substantially affect
throughput in the final processes. We adopted this approach because we needed to evalu-
ate the production flow process. When the probability intensity coefficient in the explicit
solution of the autocorrelation function is small, the influence of the phase difference is
small. By contrast, when the probability intensity coefficient is large, the influence is sub-
stantial and the form of the phase difference is temporally shifted in the right direction
of the border. From the actual data, we observed that the stochastic resonance occurred.

With regard to equipment manufacturing of small-to-midsize firm, To determine the
reference value, conventionally, we have been set based on the experience. To verify the
reference value, we think a good way as a logical approach in that sense. Another approach
is not found so far.
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Appendix A. Appendix ：Calculation of Kss(τ).∫
sinφ · e(

µ
2
)φ
{(αi

2

)
cosαiφ+ sinαiφ

}
dφ

=
(αi

2

)∫
e(

µ
2
)φ sinφ cosαiφdφ+

∫
e(

µ
2
)φ sinφ sinαiφdφ (34)
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With respect to calculate Equation (34), the followings are as follows:

ΦS
(1+αi)

=
1

2

∫
e(

µ
2
)θ sin(1 + αi)θdθ

ΦS
(1−αi)

=
1

2

∫
e(

µ
2
)θ sin(1− αi)θdθ

ΦC
(1+αi)

=
1

2

∫
e(

µ
2
)θ cos(1 + αi)θdθ

ΦC
(1−αi)

=
1

2

∫
e(

µ
2
)θ cos(1− αi)θdθ (35)

where

ΦS
(1±αi)

=
1

2(1± αi)

[
1 +

1

β3

]( 1

β

)
×
[
eβx sinx+

1

β2
eβx cos x

]T
0

(36)

or

ΦS
(1±αi)

=
1

2(1± αi)

[
1 +

1

β2

]( 1

β

)
×
[
eβx cosx+

1

β2
eβx sin x

]T
0

(37)

Then, Kss(τ) is derived as follows:

Kss(τ) = Cst

∑
i

exp(λiτ)×
[
Ai

{(2αi

µ

)(
ΦC

(1+αi)
+ ΦC

(1−αi)

)
+ΦS

(1+αi)
+ ΦS

(1−αi)

}]2
(38)

Appendix B. Appendix：Actual data in the production flow system. As a result,
the above test-run is as follows.

• (test-run1)：Each throughput in every process (S1-S6) is asynchronous, and its pro-
cess throughput is asynchronous. Table 4 represents the manufacturing time (min)
in each process. Table 5 represents the variance in each process performed by work-
ers. Table 4 represents the target time, and the theoretical throughput is given by
3× 199 + 2× 15 = 627(min).
In addition, the total working time in stage S3 is 199 (min), which causes a bot-
tleneck. Figure 23 is a graph illustrating the measurement data in Table 4, and it
represents the total working time for each worker (K1-K9). The graph in Figure 24
represents the variance data for each working time in Table 4.

• (test-run2)： Set to synchronously process the throughput.
The target time in Table 6 is 500 (min), and the theoretical throughput (not including
the synchronized idle time) is 400 (min). Table 7 represents the variance data of each
working process (S1-S6) for each worker (K1-K9).

• (test-run3)：The process throughput is performed synchronously with the reclassi-
fication of the process. The theoretical throughput (not including the synchronized
idle time) is 400 (min) in Table 8.
Table 9 represents the variance data of Table 8. 　“WS” in the measurement ta-
bles represents the standard working time. This is an empirical value obtained from
long-term experiments.
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Table 4. Total manufacturing
time at each stages for each
worker

WS S1 S2 S3 S4 S5 S6

K1 15
�� ��20

�� ��20
�� ��25

�� ��20
�� ��20

�� ��20

K2 20
�� ��22

�� ��21
�� ��22

�� ��21
�� ��19

�� ��20

K3 10
�� ��20

�� ��26
�� ��25

�� ��22
�� ��22

�� ��26
K4 20 17 15 19 18 16 18

K5 15 15
�� ��20

�� ��18
�� ��16 15 15

K6 15 15 15 15 15 15 15

K7 15
�� ��20

�� ��20
�� ��30

�� ��20
�� ��21

�� ��20

K8 20
�� ��29

�� ��33
�� ��30

�� ��29
�� ��32

�� ��33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 5. Volatility of Table4

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33
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Figure 23. Total work time
for each stage(S1−S6) in Table
4
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Figure 24. Volatility data
for each stages(S1−S6) in Ta-
ble 4
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Table 6. Total manufactur-
ing time at each stages for each
worker

WS S1 S2 S3 S4 S5 S6

K1 20 20
�� ��24 20 20 20 20

K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20

K4 20
�� ��25

�� ��25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20

K8 20
�� ��27

�� ��27
�� ��22

�� ��23 20 20
K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 7. Volatility of Table6

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0

Table 8. Total manufactur-
ing time at each stages for each
worker

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20

K3 20
�� ��21

�� ��21
�� ��21 20 20 20

K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20

K8 20
�� ��22

�� ��22 20 20 20 20

K9 20
�� ��25

�� ��25
�� ��25 20 20 20

Total 180 165 164 161 180 180 180

Table 9. Variance of Table8

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.33 3 3 0 0 0
K5 1.33 1.33 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.33 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0


