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Abstract. In manufacturing, improving throughput to secure management profit is im-
portant. We have been promoting a production flow system for improving productivity.
Here we propose a lot-casting process, namely, the asymmetric simple exclusion process,
to improve throughput. The main cause of production retention between processes is
considered to be that different processes operate at different speeds, that is, the problem
of working ability. Waiting-time constraints (idle time) occur between processes because
of capacity differences. We use Burgers equation from statistical mechanics to analyze
process retention. We propose that the nonlinear characteristics of Burgers equation cor-
respond to an asynchronous state in the process. In contrast, the linear characteristics
of Burgers equation correspond to the synchronous state of the process, that is, the state
in which the throughput is maximized.
Keywords:ASEP model, Burgers equation, production density, process re-
tention

1. Introduction. The improvement of productivity and the evaluation method in the
manufacturing industry have been discussed for many years[1, 2]. In the manufacturing
industry, TOC(Theory of Constraints) was synonymous with basic productivity improve-
ment. This is an Israeli physicist, Dr. Erie Gold Rat has pioneered about 25 years ago.
It is a methodology of system improvement[3]. Small fluctuations in an upstream sub-
system appear as large fluctuations in the downstream (the so-called bullwhip effect)[4].
The bullwhip effect generates a large gap between the demand forecasts of the market
and suppliers. Large fluctuations can be suppressed by the following mechanisms.

(1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

(2) Sharing the demand information and performing mathematical evaluations.
(3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear

vibration theory).
(4) Basing the inventory management approach on stochastic demand.

When using manufacturing equipment, delays in one production step are propagated to
the next. Hence, the use of manufacturing equipment itself may lead to delays. The
improvement of production processes was presented that the“Synchronizing the produc-
tion process method”was the most desirable in practice using the actual data in the
production flow process based on the cash flow model by using the SDE of log-normal
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type[6]. In essence, we have proposed the best way, which is a synchronous method using
the Vasicek model for mathematical finance[5]. Then, the supply chain theme, which was
a time delay in the production processes, was proposed for the throughput improvement
based on a stochastic differential equation of log−normal type[4].
The synchronization method is superior for improving throughput in production pro-

cesses, which is used by a production flow process [6]. The production flow process is
utilized for production of high-mix low-volume equipments, which are produced through
several stages in the production process. This method is good for producing specific con-
trol equipment such as semiconductor manufacturing equipment in our experience. Then,
we have reported that the production flow process has nonlinear characteristics in our
previous study [7].
Moreover, a working-time delay is propagated through the stages in the production

process. Its delays are due to volatility in the model. Indeed, the actual data indicated
that in the production flow process, the delays were propagated to the successive stages
[8].
With respect to lead time, many aspects can potentially affect lead time. For example,

from order products, the lead time from the start of development to the completion of
a product is called the time-to-finish time, such as the work required preparation of the
members for production equipments.
Moreover, several studies have focused on reducing customer lead times. In [9], the

author addresses the problem of reducing the production lead time.
In [10], the authors propose a method that increases production efficiency and allows a

greater diversity of consumer products to be produced. Their proposed approach shortens
lead times and reduces the uncertainty in demand. Moreover, it captures the stochastic
demand of customers and produces solutions by solving a nonlinear stochastic program-
ming problem. In our previous report, we calculated the expected loss value from a
lead-time function and verified a loss function with actual data[11]. Moreover, through
theoretical analysis, we clarified that for improved productivity, minimizing volatility and
fixed costs is important. A comparison between synchronous and asynchronous meth-
ods revealed a reduction of approximately 10% in the results when using synchronous
throughput. A simple exclusion process is a non-equilibrium statistical mechanics model
called a one-dimensional asymmetric simple exclusion process (ASEP). The ASEP is used
in production lines to improve production efficiency. As an application method, the ASEP
is used to optimize the production lot[12].
In this study, we use the ASEP to improve the efficiency of the production process.

When applied as a model of a lot production system, the ASEP is fundamentally a
nonlinear system represented by Burgers ’ equation. This indicates that the process
transition probability plays an important role. From the experience of three test runs of
PFP, we make the processes of each process identical and choose the appropriate value. We
arrange the workers in each process appropriately. From the aforementioned procedure,
a highly linear system is obtained that approaches a stationary system.
Dr. Nishinari proposed the ASEP model and the result of theoretical solution was con-

sistent with the simulation result. The validity of the theoretical solution was confirmed.
We apply the ASEP model to the actual production process, and also we represent the
actual data compared with the production flow process (PFP). Comparing actual data
on ASEP and PFP production efficiencies, ASEP was able to double the throughput and
reduce production costs by 20%.

2. Mathematical model for ASEP production processes. The ASEP is a non-
equilibrium statistical mechanics model that is referred to as an exclusive process. It is a
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simple model in which numerous particles diffuse under the volume-exclusion interaction
on a one-dimensional lattice.

2.1. Burgers equation for production processes. Figure 1 shows a one-lot-flowing
model in ASEP. The terms α and β denote the input and output rates, respectively, and
p denotes the transition probability from one stage to another.

Figure 2 shows that the flow volume Q in the steady state changes its behavior in
accordance with the magnitude relation of α, β, and p. It is determined as shown in
Figure 2. In Figure 2, the flow volume is defined as follows[12]:

Q = α
p− α

p− α2
, in A

Q = β
p− β

p− β2
, in B

Q =
1−

√
1− p

2
, in C

According to our previous study, we obtain the Burgers equation as follows[13, 17]:

∂S(t, x)

∂t
+ S(t, x)

∂S(t, x)

∂x
= D

∂2S(t, x)

∂x2
(1)

Equation (1) denotes the phenomenon of turbulence in fluid dynamics. If we apply it
to a production process, in the asynchronous state, the dynamic characteristics of the
potential (production density) in the process are strictly nonlinear[17].
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Figure 1. Asep model
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Figure 2. Phase diagram

We obtain the following after executing the Cole-Hopf transformation for Equation
(1)[14]:

∂φ(τ, ξ)

∂τ
= D

∂2φ(τ, ξ)

∂ξ2
(2)
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where, φ(τ, ξ) ≤ 1 and φ(τ, ξ) denotes a new production density function with a synchro-
nous states and D denotes a production flow coefficient.
We obtain the solution S(t, x) as follows[15]:

S(t, x) = −2D
∂

∂x
ln
[
(4πDt)−

1
2

∫ ∞

−∞
exp

{
−(x− x

′
)2

4Dt
− 1

2D

∫ x
′

0

S(0, x
′′
)dx

′′
}
dx

′
]

(3)

where the initial value S(0, x) is assumed to be given, x
′
and x

′′
are first derivative and

second derivative respectively.
From Equation (2), φ(τ, ξ) is derived at infinity as follows[15]:

φ(t, ξ) = exp
(
−
∫

S(t, ξ)dξ
)

(4)

Equation (4) represents the fact that the spatial elements or components of the nonlinear
function S(t, ξ) are summed and that they decay exponentially. From the perspective
of production processes, Equation (4) linearizes the nonlinear characteristics of workers
and aligns them according to the production processes, linearize and synchronize by pro-
cess improvement. In other words, Equation (4) converts a nonlinear function into a
probability distribution with an exponential family of linear functions.

2.2. Stochastic model of lot handling number. Stochastic mode is derived as follows[16]:

dn(t) = µn(t)dt+ σn(t)dW (t) (5)

where, n(t), µ, σ and W (t) denote a lot handling number, trend, volatility and Wiener
process respectively.

Figure 3. Change in the lot
handling number and produc-
tion density
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Figure 4. The expected pro-
cessing function F (n) and lot
decreasing function g(n)

Figure 3 illustrates Equation (9), which is the Fokker–Planck equation. Figure 4 denotes
the minimum lot (L) and maximum lot (U) using the expected processing function F (n)
and lot decreasing function g(n). We can obtain the transition probability f(n) from the
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Fokker–Planck equation:

f(n) =
1√
2πσ

exp
{
−(n− µ)2

2σ2

}
(6)

∂P (t, n
′|t, n)

∂t
= LFPP (t, n

′|t, n) (7)

LFP = − ∂

∂n
+

D2

2

∂2

∂n2
(8)

where P (t, n
′|t, n) denotes the transition probability density function, and the steady

distribution of transition probability f(n) is in accordance with a normal distribution[20].
According to Equation (6)–(8), the transition probability production density function

S(t, n
′|t, n) is derived as follows:

∂S(t, n
′|t, n)

∂t
= LFPS(t, n

′ |t, n) (9)

where, LFP is derived as follows:

LFP ≡ ∂

∂n
+

D2

2

∂2

∂n2
(10)

Definition 2.1. Total lot processed number G(n)

G(n) ≡ n̄+ F (n) (11)

where n̄ denotes a setting value. The function F (n) denotes the expected function as
follows [11]. When y < L, no production activity is taking place. When y > U , the
quantity ordered exceeds the physical production limit. Therefore, we must reduce the
demand and thus analyze L ≤ y ≤ U .

F (n) =

∫ U

L

(py + q)f(y)dy + C0 (12)

where, let C0 as a fixed cost. Please refer to our previous study for details[11].
1-stage processing time T (n) is derived as follows:

T (n) ≡ N̄ +
1

G(n)
(13)

where, N̄ and 1/G(n) denote a setting lead time and one lot transition time respectively.
From Equation (13), the expected total processing time TM is derived as follows:

TM = M ×
∫ N

0

T (n)dn = M ×
∫ N

0

(
N̄ +

1

G(n)

)
dn (14)

where, M denotes the total number of processes as 5× 12

3. Numerical results.

3.1. Numerical simulation. Table 1 gives four kinds of trend values and volatility
values as parameters for Figures 6–9, Figures 10–13, Figures 14–17, Figures 18–21. For
each of the four types of parameters, the representative each value of the trend value and
volatility is selected. As is clear from the figure, the simulation result of the high trend
value and the low volatility value is good. As a results, The four specific cases show case
4 > case 3 > case 2 > case 1.

• Expected processing rate function for normal probability distribution. We show
Figures 6–9.
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• Expected 1-lot transition time for normal probability distribution. We show Figures
10–13.

• 1-stage processing time for normal probability distribution. We show Figures 14–17.
• Total processing time for normal probability distribution. We show Figures 18–21.

Table 1. Numerical data for simulation

case 1 case 2 case 3 case 4
µ 0.7 0.9 0.9 0.9
σ 0.2 0.2 0.1 0.05

With respect to Figures 6–9, the expected processing-rate function for a normal prob-
ability distribution is derived as follows:

F (n) =

∫
f(n)g(n)dn, G(n) = 5 + F (n) (15)

where, g(n) = pn+ q denotes a decreasing function (p = −1).
With respect to Figures 10–13, the expected one-lot transition time is derived as follows:

1− lot transition time =
1

5 + F (n)
(16)

With respect to Figures 14–17, the one-stage processing time for a normal probability
distribution is derived as follows:

T (n) = 25 +
1

5 + F (n)
(17)

where, 25 denotes an average processing time (min.)
With respect to Figures 18–21, the total processing time for a normal probability dis-

tribution is given by Equation (14).

3.2. Actual test results. We compare the one-lot flow process (ASEP) and the PFP in
relation to throughput. From the results, we find that twice the throughput is achieved
with the ASEP: where σ, σk, and σs denote the total standard deviations of the consump-

Table 2. Total lead time of ASEP-test 1 through 3 and volatility data

ASEP-test 1 ASEP-test 2 ASEP-test 3
Read time 1506 1506 1525

σ 0.42 0.36 0.43
σk 0.25 0.22 0.24
σs 0.16 0.15 0.14

σk - σs 0.09 0.07 0.1

tion time, the time until completion of a single lot, and the time until completion of all
lots, respectively.
Table 2 allows comparison of the lead times of PFP test runs 1–3. Terms σ, σk, and σs

in Appendix B denote the total volatility including the consumption time, the volatility
in completing a single lot, and the volatility in completing all lots, respectively. From
Table 2, we observe that ASEP test 2 has small fluctuations in the process and is close to
the stationary system. Subsequently, the order of ASEP tests 1 and 3 is set. As a result,
ASEP test 2 is close to the maximum current phase.
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With respect to the ASEP model, K1 to K5 are worker numbers, and there is no
determined work order. The“ consumption time”represents the in-process consumption
time when continuous production is performed. The total lead time is the processing
time of one lot, namely, the total time taken to go through steps 1–5 plus the time for
the remaining 11 to pass through step 5. The theoretical value is derived as follows:

(5 × 25) + (25 × 11) = 400 (18)

From Table 2, ASEP test run 2 has small fluctuations in the process and is close to a
stationary system. Next, it becomes ASEP test runs 1 and 3. As a result, ASEP test run
2 is close to the maximum distribution density phase.

Terms K1–K5 in Tables 11–16 denote the number of workers. There is no determined
order of workers. With respect to the lead time, we obtain the following equation according
to Dr. Nishinari[12]:

T =
[( 1

1
25

)
+
( 1

1
25

)]
+
(11

1
25

)
+
( 5

1
25

)
(19)

where, 1
25

denotes a transition rate. The first and second term denote an input/output
time.

With respect to applying the ASEP model to a one-lot flow process, the mathematical
model is a nonlinear system represented by the Burgers’equation, which means that the
process transition probability plays an important role. Based on our PFP, we assume the
following[4, 6]:

• Based on the results of the previous PFP test runs 1–3, make the processing time of
each process the same and set it to an appropriate value.

• Arrange the workers in each process appropriately.

As mentioned previously, it is very close to a system that is both linear and stationary.
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Figure 5. ASEP production model
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From Table 3, we observed that the ASEP model achieves a cost that is roughly 20%
(2000/2400 ≈ 0.83) lower than the PFP one, as well as achieving twice the throughput.
We represent the PFP data of Table 3 by using Appendix A.

Table 3. Comparison of PFP and ASEP

PFP ASEP
Theoretical Lead time 3 × 120 + 40 = 400 25 × 12 + 4 × 25 = 400

Production Cost 3 Cycle × 400 day × 2 = 2400 5 Cycle × 400 day × 1 = 2000
Throughput 6/day 12/day
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Figure 6. Expected process-
ing rate function for normal
probability distribution(µ =
0.7, σ = 0.2)
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Figure 7. Expected process-
ing rate function for normal
probability distribution(µ =
0.9, σ = 0.2)

4. Conclusions. We evaluated the ASEP as being effective for improving production
efficiency because of the number of lots in the production line. Therefore, we applied the
ASEP method to our production processes. Twice the throughput was obtained compared
to the conventional PFP method, and the production cost was reduced by 20%. From
here on, we intend to adopt the ASEP method for production. When the difficulty level
of each process is high, the comparison of throughput between ASEP and PFP will be
handed over to the next research.
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Appendix A. Analysis of the Testrun results (PFP).

• (Testrun1)： Because the throughput of each process (S1−S6) is asynchronous, the
overall process throughput is asynchronous. In Table 5, we list the manufacturing
time (min) of each process. In Table 6, we list the volatility in each process performed
by the workers. Finally, Table 5 lists the target times. The theoretical throughput is
obtained as 3×199+2×15 = 627(min). In addition, the total working time in stage
S3 is 199 (min), which causes a bottleneck. In Fig. 22, we plot the measurement data
listed in Table 5, which represents the total working time of each worker (K1−K9).
In Fig. 23, we plot the data contained in Table 5, which represents the volatility of
the working times.

• (Testrun2)： Set to synchronously process the throughput. The target time listed in
Table 7 is 500 (min), and the theoretical throughput (not including the synchroniza-
tion idle time) is 400 (min). Table 8 presents the volatility of each working process
(S1−S6) for each worker (K1−K9).

• (Testrun3)： Introducing a preprocess stage. The process throughput is performed
synchronously with the reclassification of the process. As shown in Table 9, the the-
oretical throughput (not including the synchronization idle time) is 400 (min). Table
10 presents the volatility of each working process (S1−S6) for each worker (K1−K9).
On the basis of these results, the idle time must be set to 100 (min). Moreover, the
theoretical target throughput (T

′
s) can be obtained using the“Synchronization with

preprocess”method. This goal is as follows:

Ts ∼ 20× 6(First cycle) + 17× 6(Second cycle)

+ 20× 6(Third cycle) + 20(Previous process) + 8(Idol− time)

∼ 370(min) (20)

The full synchronous throughput in one stage (20 min.) is

T
′

s = 3× 120 + 40 = 400(min) (21)

Using the“ Synchronization with preprocess”method, the throughput is reduced
by approximately 10%. Therefore, we showed that our proposed“ Synchronization
with preprocess”method is realistic and can be applied in flow production systems.
Below, we represent for a description of the“ Synchronization with preprocess”.
　 In Table.9, the working times of the workers K4, K7 show shorter than others.
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However, the working time shows around target time. 　Next, we manufactured one
piece of equipment in three cycles. To maintain a throughput of six units/day, the
production throughput must be as follows:

(60× 8− 28)

3
× 1

6
≃ 25(min) (22)

where the throughput of the preprocess is set to 20 (min). In eqn. (22), the value 28
represents the throughput of the preprocess plus the idle time for synchronization.
Similarly, the number of processes is 8 and the total number of processes is 9 (8 plus
the preprocess). The value of 60 is obtained as 20 (min) × 3 (cycles).

Table 4. Correspondence between the table labels and the Test−run number

Table Number Production process Working time Volatility
Test−run1 Table.5 Asynchronous process 627(min) 0.29
Test−run2 Table.7 Synchronous process 500(min) 0.06

Test−run3
�� ��Table.9

�� ��“ Synchronization with preprocess”method
�� ��470(min)

�� ��0.03

In Table.4, Test−run3 indicates a best value for the throughput in the three types of
theoretical working time. Test−run2 is ideal production method. However, because it is
difficult for talented worker, Test−run3 is a realistic method.

Table 5. Total manufacturing time
at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 15 20 20 25 20 20 20
K2 20 22 21 22 21 19 20
K3 10 20 26 25 22 22 26
K4 20 17 15 19 18 16 18
K5 15 15 20 18 16 15 15
K6 15 15 15 15 15 15 15
K7 15 20 20 30 20 21 20
K8 20 29 33 30 29 32 33
K9 15 14 14 15 14 14 14

Total 145 172
�� ��184

�� ��199 175 174 181

Deviation 27
�� ��39

�� ��54 30 29 36

Table 6. Volatility of Table5　　
　　　　　　

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

The results are as follows. Here, the trend coefficient, which is the actual number of
pieces of equipment/the target number of equipment, represents a factor that indicates
the degree of the number of pieces of manufacturing equipment.
Test−run1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73
Test−run2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92
Test−run3: 5.7 (pieces of equipment)/6 (pieces of equipment) = 0.95
Volatility data represent the average value of each Test−run.

Appendix B. Analysis of the Test run results(ASEP).
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Figure 22. Total work time
for each stage(S1−S6) in Table
5

!!

"!

#!

$!

%!

&!

'!

(!

)!

*!

+,! +-! +.! +/! +0! +1!

2
3
45
67
476
8
9:
5
65
!

;5<=>5?6=@7<A9B65AC9<5DC!

Figure 23. Volatility data
for each stages(S1−S6) in Ta-
ble 5

Table 7. Total manufacturing time
at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180
�� ��192

�� ��196 182 183 182 180

Deviation
�� ��12

�� ��16 2 3 2 0

Table 8. Volatility of Table 7　　
　　　　　　
K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0
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Table 9. Total manufacturing time
at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20
K3 20 21 21 21 20 20 20
K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20
K8 20 22 22 20 20 20 20
K9 20 25 25 25 20 20 20

Total 180 165 164
�� ��161

�� ��180 180 180

Deviation - 15 -16
�� ��-19

�� ��0 0 0

Table 10. Volatility of Table 9

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.3 3 3 0 0 0
K5 1.3 1.3 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.3 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0

Table 11. Total manufacturing
time at each stages for each worker

K1 K2 K3 K4 K5 Total
S1 25 25 26 25 25 126
S2 26 25 25 24 24 124
S3 24 25 25 25 25 124
S4 25 26 25 24 24 124
S5 26 25 26 26 25 128
S6 25 25 25 25 25 125
S7 25 24 26 24 26 125
S8 25 26 26 25 25 127
S9 26 25 25 25 25 126
S10 25 25 25 24 25 124
S11 25 25 25 25 25 125
S12 25 26 26 25 26 128

Total 302 302 305 297 300
�� ��1506

AVG 25.17 25.17 25.42 24.75 25 125.5

Table 12. Volatility of Table 11　
　　　　　　　

K1 K2 K3 K4 K5 Total
S1 0.028 0.028 0.34 0.063 0 0.25
S2 0.69 0.028 0.17 0.56 1 2.25
S3 1.36 0.028 0.17 0.063 0 2.25
S4 0.028 0.69 0.17 0.56 1 2.25
S5 0.69 0.028 0.34 1.56 0 6.25
S6 0.028 0.028 0.17 0.063 0 0.25
S7 0.028 1.36 0.34 0.56 1 0.25
S8 0.028 0.69 0.34 0.063 0 2.25
S9 0.69 0.028 0.17 0.063 0 0.25
S10 0.028 0.028 0.17 0.56 0 2.25
S11 0.028 0.028 0.174 0.063 0 0.25
S12 0.028 0.69 0.34 0.063 1 6.25
AVG 25.17 25.17 25.42 24.75 25 125.5

σ 0.16 0.16 0.14 0.17 0.17
�� ��0.42
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Table 13. Total manufacturing
time at each stages for each worker

K1 K2 K3 K4 K5 Total
S1 25 25 26 25 25 126
S2 26 25 25 24 24 124
S3 25 25 25 25 25 125
S4 25 26 25 24 24 124
S5 26 25 26 26 25 128
S6 25 25 25 25 25 125
S7 25 24 26 24 26 125
S8 25 26 26 25 25 127
S9 26 25 25 25 25 126
S10 25 25 25 24 25 124
S11 25 25 25 25 25 125
S12 25 26 26 25 25 127
Total 303 302 305 297 299 1506
AVG 25.3 25.2 25.4 24.8 24.9 125.5

Table 14. Volatility of Table 13　
　　　　　　　

K1 K2 K3 K4 K5 Total
S1 0.063 0.028 0.34 0.063 0.007 0.25
S2 0.56 0.028 0.17 0.56 0.84 2.25
S3 0.063 0.028 0.17 0.063 0.007 0.25
S4 0.063 0.69 0.17 0.56 0.84 2.25
S5 0.56 0.028 0.34 1.56 0.007 6.25
S6 0.063 0.028 0.17 0.063 0.007 0.25
S7 0.063 1.36 0.34 0.56 1.18 0.25
S8 0.063 0.69 0.34 0.063 0.007 2.25
S9 0.56 0.028 0.17 0.063 0.007 0.25
S10 0.063 0.028 0.17 0.56 0.007 2.25
S11 0.063 0.028 0.17 0.063 0.007 0.25
S12 0.063 0.69 0.34 0.063 0.007 2.25
AVG 25.3 25.2 25.4 24.8 24.9 125.5
STD 0.13 0.16 0.14 0.17 0.17 0.14

Table 15. Total manufacturing
time at each stages for each worker

K1 K2 K3 K4 K5 Total
S1 26 26 26 26 26 130
S2 26 26 25 26 26 129
S3 25 26 25 25 25 126
S4 25 26 25 26 26 128
S5 26 26 26 25 25 128
S6 25 25 25 25 25 125
S7 25 25 26 26 26 128
S8 25 26 26 25 25 127
S9 26 25 25 25 25 126
S10 25 25 25 26 25 126
S11 25 25 25 25 25 125
S12 25 26 26 25 25 127
Total 304 307 305 305 304 1525
AVG 25.3 25.6 25.4 24.4 25.3 127.1

Table 16. Volatility of Table 15　
　　　　　　　

K1 K2 K3 K4 K5 Total
S1 0.45 0.17 0.34 0.34 0.45 8.5
S2 0.45 0.17 0.17 0.34 0.45 3.7
S3 0.11 0.17 0.17 0.17 0.11 1.2
S4 0.11 0.17 0.17 0.34 0.45 0.8
S5 0.45 0.17 0.34 0.17 0.11 0.8
S6 0.11 0.34 0.17 0.17 0.11 4.3
S7 0.11 0.34 0.34 0.34 0.45 0.8
S8 0.11 0.17 0.34 0.17 0.11 0.007
S9 0.45 0.34 0.17 0.17 0.11 1.2
S10 0.11 0.34 0.17 0.34 0.11 1.2
S11 0.11 0.34 0.17 0.17 0.11 4.3
S12 0.11 0.17 0.34 0.17 0.11 0.007
AVG 25.3 25.2 25.4 24.8 24.9 125.5
STD 0.14 0.14 0.14 0.14 0.14 0.4
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Table 17. Average value of standard deviation of flows to K1-K5(ASEP)

Test run 1 Test run 2 Test run 3
S1 0.14 0.15 2.05*
S2 0.94 0.88 1.05*
S3 0.78 0.12 0.38
S4 0.94 0.92 0.42
S5 1.77 1.75 0.42
S6 0.11 0.12 1.05*
S7 0.71 0.75 0.48
S8 0.67 0.68 0.18
S9 0.24 0.22 0.48
S10 0.61 0.62 0.45
S11 0.11 0.12 1.05*
S12 1.67 0.68 0.18
σk 0.25 0.22 0.24


